UNTTS, PHYSICAL
QUANTITIES,
AND VECTORS

\ A /hy study physics? For two reasons. First, physics is one of the most funda-
V'V mental of the sciences. Scientists of all disciplines make use of the ideas of
physics, from chemists who study the structure of molecules to paleontologists
who try to reconstruct how dinosaurs walked. The principles of physics play an
essential role in the scientific quest to understand how human activities affect the
atmosphere and oceans, and in the search for alternative sources of energy.
Physics is also the foundation of all engineering and technology. No engineer
could design any kind of practical device without first understanding the basic
principles involved. No engineer could design a DVD player, a flat-screen TV, an
interplanetary spacecraft, or even a better mousetrap without first understanding
the basic laws of physics.

But there’s another reason. The study of physics is an adventure. You will find
it challenging, sometimes frustrating, occasionally painful, and often richly
rewarding and satisfying. It will appeal to your sense of beauty as well as to your
rational intelligence. Our present understanding of the physical world has been
built on the foundations laid by scientific giants such as Galileo, Newton,
Maxwell, and Einstein, and their influence has extended far beyond science to
affect profoundly the ways in which we live and think. You can share some of the
excitement of their discoveries when you learn to use physics to solve practical
problems and to gain insight into everyday phenomena. If you’ve ever wondered

Accurate measurement is essential in med-
ical applications of physics. The laser
beams shining on this cancer patient form a
cross-hairs on the site of a tumor, which is
then bombarded by a stream of high-energy
neutrons coming from the square aperture
on the right. The neutrons deposit their
energy in the tumor, stopping its growth
and, ideally, destroying it completely.
Because the narrow neutron beam is very
accurately targeted, little damage occurs to
the healthy tissue surrounding the tumor.

2 subatomic particles used in

cancer therapy can be aimed at a
tumor with an accuracy of 100
micrometers. How many human
blood cells laid side by side would
span this distance?




1.1 Two research laboratories. (a) The
Leaning Tower in Pisa, Italy. According to
legend, Galileo studied the motion of
freely falling bodies by dropping them
from the tower. He is also said to have
studied pendulum motion by observing the
swinging of the chandelier in the cathedral
behind the tower. (b) The Hubble Space
Telescope is the first major telescope to
operate outside the earth’s atmosphere. Its
sensitive instruments measure visible,
ultraviolet, and near-infrared light from
astronomical objects. The Space Telescope
has been used to study phenomena ranging
from eruptions on the moons of J upiter to
the cores of distant galaxies. It is shown
here in March 2002 while being repaired
in orbit by the crew of the Space Shuttle
Columbia.
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why the sky is blue, how radio waves can travel through empty space, or how a
satellite stays in orbit, you can find the answers by using fundamental physics.
Above all, you will come to see physics as a towering achievement of the human
intellect in its quest to understand our world and ourselves.

In this opening chapter, we’ll go over some important preliminaries that we’Il
need throughout our study. We’ll discuss the nature of physical theory and the use
of idealized models to represent physical systems. We’ll introduce the systems of
units used to describe physical quantities and discuss ways to describe the accu-
racy of a number. We’ll look at examples of problems for which we can’t (or don’t
want to) find a precise answer, but for which rough estimates can be useful and
interesting. Finally, we’ll study several aspects of vectors and vector algebra. Vec-
tors will be needed throughout our study of physics to describe and analyze phys-
ical quantities, such as velocity and force, that have direction as well as
magnitude.

1.1 | The Nature of Physics

Physics is an experimental science. Physicists observe the phenomena of nature
and try to find patterns and principles that relate these phenomena. These patterns
are called physical theories or, when they are very well established and of broad
use, physical laws or principles.

WCAUTIONT Calling an idea a theory does not mean that it’s just a random
thought or an unproven concept. Rather, a theory is an explanation of natural
phenomena based on observation and accepted fundamental principles. An
example is the theory of biological evolution, which is the result of extensive
research and observation by generations of biologists.

The development of physical theory requires creativity at every stage. The
physicist has to learn to ask appropriate questions, design experiments to try to
answer the questions, and draw appropriate conclusions from the results. Figure
1.1 shows two famous experimental facilities.
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1.2 | Solving Physics Problems

According to legend, Galileo Galilei (1564—1642) dropped light and heavy
objects from the top of the Leaning Tower of Pisa (Fig. 1.1a) to find out whether
their rates of fall were the same or different. Galileo recognized that only experi-
mental investigation could answer this question. From examining the results of
his experiments (which were actually much more sophisticated than in the leg-
end), he made the inductive leap to the principle, or theory, that the acceleration
of a falling body is independent of its weight.

The development of physical theories such as Galileo’s is always a two-way
process that starts and ends with observations or experiments. This development
often takes an indirect path, with blind alleys, wrong guesses, and the discarding
of unsuccessful theories in favor of more promising ones. Physics is not simply a
collection of facts and principles; it is also the process by which we arrive at gen-
eral principles that describe how the physical universe behaves.

No theory is ever regarded as the final or ultimate truth. The possibility
always exists that new observations will require that a theory be revised or dis-
carded. It is in the nature of physical theory that we can disprove a theory by
finding behavior that is inconsistent with it, but we can never prove that a theory
is always correct.

Getting back to Galileo, suppose we drop a feather and a cannonball. They cer-
tainly do not fall at the same rate. This does not mean that Galileo was wrong; it
means that his theory was incomplete. If we drop the feather and the cannonball
in a vacuum to eliminate the effects of the air, then they do fall at the same rate.
Galileo’s theory has a range of validity: it applies only to objects for which the
force exerted by the air (due to air resistance and buoyancy) is much less than the
weight. Objects like feathers or parachutes are clearly outside this range.

Every physical theory has a range of validity outside of which it is not applic-
able. Often a new development in physics extends a principle’s range of validity.
Galileo’s analysis of falling bodies was greatly extended half a century later by
Newton’s laws of motion and law of gravitation.

1.2 | Solving Physics Problems

At some point in their studies, almost all physics students find themselves think-
ing, “I understand the concepts, but I just can’t solve the problems.” But in
physics, truly understanding a concept or principle is the same thing as being able
to apply it to a variety of practical problems. Learning how to solve problems is
absolutely essential; you don’t know physics unless you can do physics.

How do you learn to solve physics problems? In every chapter of this book you
will find Problem-Solving Strategies that offer techniques for setting up and solving
problems efficiently and accurately. Following each Problem-Solving Strategy are
one or more worked Examples that show these techniques in action. (The Problem-
Solving Strategies will also help steer you away from some incorrect techniques
that you may be tempted to use.) You’ll also find additional examples that aren’t
associated with a particular Problem-Solving Strategy. Study these strategies and
examples carefully, and work through each example for yourself ona piece of paper.

Different techniques are useful for solving different kinds of physics problems,
which is why this book offers dozens of Problem-Solving Strategies. No matter
what kind of problem you’re dealing with, however, there are certain key steps
that you’ll always follow. (These same steps are equally useful for problems in
math, engineering, chemistry, and many other fields.) In this book we’ve orga-
nized these steps into four stages of solving a problem.
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Problem-Solvin ; /
Strategy ; Solving Physics Problems

IDENTIFY the relevant concepts: First, decide which physics
ideas are relevant to the problem. Although this step doesn’t
involve any calculations, it’s sometimes the most challenging
part of solving the problem. Don’t skip over this step, though;
choosing the wrong approach at the beginning can make the
problem more difficult than it has to be, or even lead you to an
incorrect answer.

At this stage you’ll also want to identify the target variable
of the problem. The target variable is the quantity whose value
you're trying to find. It could be the speed at which a projectile
hits the ground, the intensity of a sound made by a siren, or the
strength of a magnetic field generated by an electromagnet.
(Sometimes the goal will be to find a mathematical expression
for the target variable rather than a numerical value. Sometimes,
too, the problem will have more than one target variable.) The
target variable is the goal of the problem—solving process;
make sure you don’t lose sight of this goal as you work through
the mathematics of the solution.

SET UP the problem: If appropriate, draw a sketch of the situa-
tion described in the problem. Based on the concepts you
selected in the Identify step, choose the equations that you’ll use
to solve the problem and decide how you’ll use them.

EXECUTE the solution: In this step, you “do the math.” Before
you launch into a flurry of calculations, make a list of all known
and unknown quantities, and note which are the target variable
or variables. Then solve the equations for the unknowns.

EVALUATE your answer: The goal of physics problem solving
isn’t just to get a number or a formula; it’s to achieve better
understanding. That means you must examine your answer to
see what it’s telling you. In particular, ask yourself, “Does this
answer make sense?” If your target variable was the radius of
the Earth and your answer is 6.38 centimeters (or if your answer
turned out to be a negative number!), something went wrong in
your problem-solving process. Go back and check your work,

and revise your solution as necessary.

All of the Problem-Solving Strategies and Examples in this book will follow
these four steps. (In some cases we will combine the first two or three steps.) We
encourage you to follow these same steps when you solve problems yourself. You
may find it useful to remember the acronym I SEE—short for Identify, Set up,
Execute, and Evaluate.

Idealized Models

In everyday conversation we often use the word “model” to mean either a small-
scale replica, such as a model railroad, or a person who displays articles of cloth-
ing (or the absence there of). In physics a model is a simplified version of a
physical system that would be too complicated to analyze in full detail.

For example, suppose we want to analyze the motion of a baseball thrown
through the air. How complicated is this problem? The ball is neither perfectly
spherical nor perfectly rigid; it has raised seams, and it spins as it moves through
the air. Wind and air resistance influence its motion, the earth rotates beneath it,
the ball’s weight varies a little as its distance from the center of the earth
changes, and so on. If we try to include all these things, the analysis gets hope-
lessly complicated. Instead, we invent a simplified version of the problem. We
neglect the size and shape of the ball by representing it as a point object, or par-
ticle. We neglect air resistance by making the ball move in a vacuum, we ignore
the earth’s rotation, and we make the weight constant. Now we have a problem
that is simple enough to deal with. We will analyze this model in detail in
Chapter 3.

To make an idealized model of the system, we have to overlook quite a few
minor effects to concentrate on the most important features of the system. Of
course, we have to be careful not to neglect too much. If we ignore the effects of
gravity completely, then our model predicts that when we throw the ball up, it
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1.3 | Standards and Units

goes in a straight line and disappears into space. We need to use some judgment
and creativity to construct a model that simplifies a problem enough to make it
manageable, yet keeps its essential features.

When we use a model to predict how a system will behave, the validity of our
predictions is limited by the validity of the model. Going back to Galileo once
more, we see that his prediction about falling bodies corresponds to an idealized
model that does not include the effects of air resistance. This model works fairly
well for a dropped cannonball, but not so well for a feather.

The concept of idealized models is extremely important in all physical
science and technology. When we apply physical principles to complex sys-
tems, we always use idealized models, and we have to be aware of the assump-
tions we are making. In fact, the principles of physics themselves are stated in
terms of idealized models; we speak about point masses, rigid bodies, ideal
insulators, and so on. Idealized models play a crucial role throughout this book.
Watch for them in discussions of physical theories and their applications to spe-

cific problems.

1.3 | Standards and Units

As we learned in Section 1.1, physics is an experimental science. Experiments
require measurements, and we generally use numbers to describe the results of
measurements. Any number that is used to describe a physical phenomenon quan-
titatively is called a physical quantity. For example, two physical quantities that
describe you are your weight and your height. Some physical quantities are so
fundamental that we can define them only by describing how to measure them.
Such a definition is called an operational definition. Some examples are mea-
suring a distance by using a ruler, and measuring a time interval by using a stop-
watch. In other cases we define a physical quantity by describing how to calculate
it from other quantities that we can measure. Thus we might define the average
speed of a moving object as the distance traveled (measured with a ruler) divided
by the time of travel (measured with a stopwatch).

When we measure a quantity, we always compare it with some reference stan-
dard. When we say that a Porsche Carrera GT is 4.56 meters long, we mean that it
is 4.56 times as long as a meter stick, which we define to be 1 meter long. Such a
standard defines a unit of the quantity. The meter is a unit of distance, and the sec-
ond is a unit of time. When we use a number to describe a physical quantity, we
must always specify the unit that we are using; to describe a distance simply as
“4.56” wouldn’t mean anything.

To make accurate, reliable measurements, we need units of measurement that
do not change and that can be duplicated by observers in various locations. The
system of units used by scientists and engineers around the world is commonly
called “the metric system,” but since 1960 it has been known officially as the
International System, or SI (the abbreviation for its French name, Systeme Inter-
national). A list of all SI units is given in Appendix A, as are definitions of the
most fundamental units.

The definitions of the basic units of the metric system have evolved over the
years. When the metric system was established in 1791 by the French Academy of
Sciences, the meter was defined as one ten-millionth of the distance from the
North Pole to the equator (Fig. 1.2). The second was defined as the time required

North Pole

1.2 In 1791 the distance from the North
Pole to the equator was defined to be
exactly 107 m. With the modern definition
of the meter this distance is about 0.02%
more than 107 m.
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for a pendulum one meter long to swing from one side to the other. These defini-
tions were cumbersome and hard to duplicate precisely, and by international
agreement they have been replaced with more refined definitions.

Time

From 1889 until 1967, the unit of time was defined as a certain fraction of the
mean solar day, the average time between successive arrivals of the sun at its
highest point in the sky. The present standard, adopted in 1967, is much more pre-
cise. It is based on an atomic clock, which uses the energy difference between the
two lowest energy states of the cesium atom. When bombarded by microwaves of
precisely the proper frequency, cesium atoms undergo a transition from one of
these states to the other. One second is defined as the time required for
9,192,631,770 cycles of this microwave radiation.

Length

In 1960 an atomic standard for the meter was also established, using the wave-
length of the orange-red light emitted by atoms of krypton (%°Kr) in a glow dis-
charge tube. Using this length standard, the speed of light in a vacuum was
measured to be 299,792,458 m/s. In November 1983, the length standard was
changed again so that the speed of light in a vacuum was defined to be precisely
299,792,458 m/s. The meter is defined to be consistent with this number and with
the above definition of the second. Hence the new definition of the meter is the
distance that light travels in a vacuum in 1/299,792,458 second. This provides a
much more precise standard of length than the one based on a wavelength of light.

Mass

The standard of mass, the kilogram, is defined to be the mass of a particular
cylinder of platinum-iridium alloy. That cylinder is kept at the International
Bureau of Weights and Measures at Sévres, near Paris. An atomic standard of
mass would be more fundamental, but at present we cannot measure masses on an
atomic scale with as much accuracy as on a macroscopic scale. The gram (which
is not a fundamental unit) is 0.001 kilogram.

Unit Prefixes

Once we have defined the fundamental units, it is easy to introduce larger and
smaller units for the same physical quantities. In the metric system these other
units are related to the fundamental units (or, in the case of mass, to the gram) by
multiples of 10 or % Thus one kilometer (1 km) is 1000 meters, and one cen-
timeter (1 cm) is 155 meter. We usually express multiples of 10 or = in exponential
notation: 1000 = 10°, 1o55 = 107>, and so on. With this notation, 1 km = 10° m
and 1cm = 102 m.

The names of the additional units are derived by adding a prefix to the name
of the fundamental unit. For example, the prefix “kilo-,” abbreviated k, always
means a unit larger by a factor of 1000; thus

1 kilometer = 1 km = 10> meters = 10° m
10° grams = 10° g
10° watts 10°'W

Il
Il

1 kilogram = 1kg
1 kilowatt 1 kW

Il
Il
Il
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(a) 10®*m (b) 10" m

@ 1m 7 () 10™°m

1.3 Some typical lengths in the universe. (a) The most distant galaxies are about
10% m, or 10% km, away. (b) The sun is 1.50 X 10'" m, or 1.50 X 10° km, from our earth.
(g 107*m  (c) The diameter of the earth is 1.28 X 107 m, or 12,800 km. (d) A typical human is about
1.7 m, or 170 cm, tall. (¢) Human red blood cells are about 8 X 107° m (0.008 mm, or 8 pm)
in diameter. (f) These oxygen atoms, shown arrayed on the surface of a crystal, are about
1079 m, or 10™* wm, in radius. (g) Typical atomic nuclei (shown in an artist’s impression)
have radii of about 10~ m, or 107> nm.

A table on the inside back cover of this book lists the standard SI prefixes, with
their meanings and abbreviations.

Here are several examples of the use of multiples of 10 and their prefixes with
the units of length, mass, and time. Figure 1.3 shows how these prefixes help
describe both large and small distances.

Length

| nanometer = 1 nm = 107° m (a few times the size of the largest atom )
| micrometer

Il
Il

1 pm = 107% m (size of some bacteria and living cells)

| millimeter = 1 mm

107> m (diameter of the point of a ballpoint pen )
| centimeter = 1 cm

1072 m (diameter of your little finger)

| kilometer = 1km = 10°m (a 10-minute walk)
Mass
I microgram = 1 ug = 107 g = 107 kg (mass of a very small dust particle)

I milligram = 1 mg

Il

1073 g = 107% kg (mass of a grain of salt)
I gram =1g = 1073kg (mass of a paper clip)




vUiay, 7

\
\ 100 120 4 4
N 80 140 // 00 -~

mph  g0” -

180~ yooig

200 _120—

~
140 >
N

220 kmvh
~

miles

1.4 Many everyday items make use of
both SI and British units. An example is
this speedometer from a U.S.-built auto-
mobile, which shows the speed in both
kilometers per hour and miles per hour.
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Time

1 nanosecond = 1ns = 107" s (time for light to travel 0.3 m)

1075 s (time for an orbiting space shuttle to travel
8 mm)

1 microsecond = 1 us

1 millisecond = 1 ms = 10~ s (time for sound to travel 0.35 m)

The British System

Finally, we mention the British system of units. These units are used only in the
United States and a few other countries, and in most of these they are being
replaced by SI units. British units are now officially defined in terms of SI units,
as follows:

Length: 1inch = 2.54 cm (exactly)
Force: 1 pound = 4.448221615260 newtons (exactly )

The newton, abbreviated N, is the SI unit of force. The British unit of time is the
second, defined the same way as in SI. In physics, British units are used only in
mechanics and thermodynamics; there is no British system of electrical units.

In this book we use SI units for all examples and problems, but we occasion-
ally give approximate equivalents in British units. As you do problems using SI
units, you may also wish to convert to the approximate British equivalents if they
are more familiar to you (see Fig. 1.4). But you should try to think directly in SI
as much as you can.

1.4 | Unit Consistency and Conversions

We use equations to express relationships among physical quantities, represented
by algebraic symbols. Each algebraic symbol always denotes both a number and
a unit. For example, d might represent a distance of 10 m, # a time of 5 s, and v a
speed of 2 m/s.

An equation must always be dimensionally consistent. You can’t add apples
and automobiles; two terms may be added or equated only if they have the same
units. For example, if a body moving with constant speed v travels a distance d in
a time ¢, these quantities are related by the equation

d=ut (L.1)

If d is measured in meters, then the product vf must also be expressed in meters.
Using the above numbers as an example, we may write

10m = (2?)(5@

Because the unit 1/s on the right side of the equation cancels the unit s, the prod-
uct vt has units of meters, as it must. In calculations, units are treated just like
algebraic symbols with respect to multiplication and division.
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¢AUTIONT When a problem requires calculations using numbers with units,

always write t

he numbers with the correct units and carry the units through the

calculation as in the example above. This provides a very useful check for calcu-
|ations. If at some stage in a calculation you find that an equation or an expres-

sion

has inconsistent units, you know you have made an error somewhere. In

this book we will always carry units through all calculations, and we strongly

urge you to follow this practice when you solve problems.

Problem;SoIving

Strategy Unit Conversions
IDENTIEY the relevant concepts: Unit conversion is important,
but it’s also important to recognize when it’s needed. In most
cases, you're best off using the fundamental ST units (lengths in
meters, masses in kilograms, and time in seconds) within a
problem. If you need the answer to be in a different set of units
(such as kilometers, grams, or hours), wait until the end of the
problem to make the conversion. In the following examples,
we’ll concentrate on unit conversion alone, so we’ll skip the

Identify step.

SET UP the problem and EXECUTE the solution: Units are mul-
tiplied and divided just like ordinary algebraic symbols. This
gives us an easy way to convert a quantity from one set of units
to another. The key idea is to express the same physical quantity
in two different units and form an equality.

For example, when we say that 1 min = 60 s, we don’t mean
that the number 1 is equal to the number 60; rather, we mean
that I min represents the same physical time interval as 60 s.

Converting speed units

The official world land speed record is 1228.0 km/h, set on October
15,1997, by Andy Green in the jet engine car Thrust SSC. Express
this speed in meters per second.

| SOLUTION |

IDENTIFY, SET UP and EXECUTE: The prefix k means 10°, so
the speed 1228.0 km/h = 1228.0 X 10° m/h. We also know that
there are 3600 s in 1 h. So we must combine the speed of
1228.0 X 10° m/h and a factor of 3600. But should we multiply or
divide by this factor? If we treat the factor as a pure number with-
out units, we’re forced to guess how to proceed.

The correct approach is to carry the units with each factor. We
then arrange the factor so that the hour unit cancels:

1K

1228.0 km/h = (1228.0 x 10°2
1 \3600 s

) = 341.11 m/s

For this reason, the ratio (1 min)/(60 s) equals 1, as does its re-
ciprocal (60 s)/(1 min). We may multiply a quantity by either of
these factors without changing that quantity’s physical meaning.
For example, to find the number of seconds in 3 min, we write

60
3 min = (3miﬂ)( >
1 min

=180s

EVALUATE your answer: If you do your unit conversions cor-
rectly, unwanted units will cancel, as in the example above. If
instead you had multiplied 3 min by (1 min)/(60 s), your result
would have been 3; min/s, which is a rather odd way of mea-
suring time. To be sure you convert units properly, you must
write down the units at all stages of the calculation.

Finally, check whether your answer is reasonable. Is the
result 3 min = 180 s reasonable? The answer is yes; the second
is a smaller unit than the minute, so there are more seconds than
minutes in the same time interval.

If you multiplied by (3600 s)/(1 h) instead of (1 h)/(3600 s), the
hour unit wouldn’t cancel, and you would be able to easily recog-
nize your error. Again, the only way to be sure that you correctly
convert units is to carry the units throughout the calculation.

EVALUATE: While you probably have a good intuition for speeds
in kilometers per hour or miles per hour, speeds in meters per sec-
ond are likely to be a bit more mysterious. Notice that the length
of an average person’s stride is about one meter, and a good walk-
ing pace is about one stride per second. Thus a typical walking
speed is about 1 m/s. By comparison, a speed of 341.11 m/s is
rapid indeed!
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10
Example . .
12 Converting volume units

The world’s largest cut diamond is the First Star of Africa (mounted ~ Also, 1 cm = 1072 m, and
in the British Royal Sceptre and kept in the Tower of London). Its

-2 _\3
volume is 1.84 cubic inches. What is its volume in cubic centime- 30.2 cm’ = (30,2 cm3)(10 m)
ters? In cubic meters? 1 cm
33
= (302) (107222~ 302 x 1076 m?
cnt
IDENTIFY, SET UP and EXECUTE: To convert cubic inches to
cubic centimeters, we multiply by [(2.54 cm)/(1in.)]? not just
(2.54 cm)/(1 in.). We find EVALUATE: Our answer shows that while 1 centimeter is 1072 of a
5 meter (that is, 1 cm = 1072 m), a cubic centimeter (1 cm®) is not
1.84in3 = (1.84in3) (2-54 cm) 1072 of a cubic meter. Rather, it is the volume of a cube whose sides
1in. are 1 cm long. So 1 cm® = (1em)? = (1072m)3 = (107%)* m’,
i om® orlcm® = 10"%m’,
= (1.84)(2.54)* .in/S = 30.2 cm®

1.5 | Uncertainty and Significant Figures

Measurements always have uncertainties. If you measure the thickness of the
cover of this book using an ordinary ruler, your measurement is reliable only to
the nearest millimeter, and your result will be 3 mm. It would be wrong to state
this result as 3.00 mm; given the limitations of the measuring device, you can’t
tell whether the actual thickness is 3.00 mm, 2.85 mm, or 3.11 mm. But if you use
a micrometer caliper, a device that measures distances reliably to the nearest 0.01
mm, the result will be 2.91 mm. The distinction between these two measurements
is in their uncertainty. The measurement using the micrometer caliper has a
smaller uncertainty; it’s a more accurate measurement. The uncertainty is also
called the error, because it indicates the maximum difference there is likely to be
between the measured value and the true value. The uncertainty or error of a mea-
sured value depends on the measurement technique used.

We often indicate the accuracy of a measured value—that is, how close it is
likely to be to the true value—by writing the number, the symbol *+, and a second
number indicating the uncertainty of the measurement. If the diameter of a steel
rod is given as 56.47 = 0.02 mm, this means that the true value is unlikely to be
less than 56.45 mm or greater than 56.49 mm. In a commonly used shorthand
notation, the number 1.6454(21) means 1.6454 = 0.0021. The numbers in paren-
theses show the uncertainty in the final digits of the main number.

We can also express accuracy in terms of the maximum likely fractional error
or percent error (also called fractional uncertainty and percent uncertainty). A
resistor labeled “47 ohms * 10%” probably has a true resistance differing from
47 ohms by no more than 10% of 47 ohms—that is, about 5 ohms. The resistance
is probably between 42 and 52 ohms. For the diameter of the steel rod given
above, the fractional error is (0.02 mm)/(56.47 mm), or about 0.0004; the percent
error is (0.0004) (100%), or about 0.04%. Even small percent errors can some-
times be very significant (Fig. 1.5).

In many cases the uncertainty of a number is not stated explicitly. Instead,

1.5 This spectacular mishap was the result

of a very small percent error—traveling a . . . .. ..
few meters too far in a journey of hundreds the uncertainty is indicated by the number of meaningful digits, or significant

of thousands of meters. figures, in the measured value. We gave the thickness of the cover of this book
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01+mm, which has three significant figures. By this we mean that the first
ts are known to be correct, while the third digit is uncertain. The last
4s in the hundredths place, so the uncertainty is about 0.01 mm. Two val-
:T with the same number of significant figures may have different uncertain-
a distance given as 137 km also has three significant figures, but the

rtainty is about 1 km.
‘When you use numbers having uncertainties to compute other numbers, the

¢ m® mputed numbers are also uncertain. It is especially important to understand this
&n you compare a number obtained from measurements with a value obtained
1 pomh a theoretical prediction. Suppose you want to verify the value of 7, the ratio
;1072 of a | the circumference of a circle to its diameter. The true value of this ratio to ten
m’) is not | igits is 3.141592654. To make your own calculation, you draw a large circle and
hose sides easure its diameter and circumference to the nearest millimeter, obtaining the
1072)% m?, J alues 135 mm and 424 mm. You punch these into your calculator and obtain the
| uotient 3.140740741. Does this agree with the true value or not?
{ First, the last seven digits in this answer are meaningless; they imply a smaller
ppéertainty than is possible with your measurements. When numbers are multi-
em— -plied or divided, the number of significant figures in the result can be no greater
than in the factor with the fewest significant figures. For example,
-351416 X 2.34 X 0.58 = 4.3. Your measurements each have three significant
3 figures, so your measured value of 77, equal to (424 mm)/(135 mm), can have only
sgs of the ] three significant figures. It should be stated simply as 3.14. Within the limit of
le only to three significant figures, your value does agree with the true value.
g to state .. When we add and subtract numbers, it’s the location of the decimal point that
you can’t 1 matters, not the number of significant figures. For example, 123.62 + 8.9 =
if you use i 132.5. Although 123.62 has an uncertainty of about 0.01, 8.9 has an uncertainty of
arest 0.01 1 about 0.1. So their sum has an uncertainty of about 0.1 and should be written as
surements | 132.5, not 132.52.
per has a ] . In the examples and problems in this book we usually give numerical values
ity is also ] with three significant figures, so your answers should usually have no more than

kely to be | - three significant figures. (Many numbers that you encounter in the real world
s have even less accuracy. An automobile speedometer, for example, usually gives

of a mea only two significant figures.) You might do the arithmetic with a calculator hav-
close it is ing a display with ten digits. To give a ten-digit answer is not merely unnecessary,
12 second | but genuinely wrong, because it misrepresents the accuracy of the results. Always
of a steel | round your final answer to keep only the correct number of significant figures or,

kely to be | \ in doubtful cases, one more at most. In Example 1.1 it would have been wrong to
1 state the answer as 341.11111 m/s. Note that when you reduce such an answer to

shorthand ) L .
; in paren- ] the appropnz.lte number of significant figures, you must round, not truncate. Your
calculator will tell you that the ratio of 525 m to 311 m is 1.688102894; to three
inal error | significant figures, this is 1.69, not 1.68.
tainty). A | . When we calculate with very large or very small numbers, we can show sig-
ring from nificant figures much more easily by using scientific notation, sometimes called
resistance | powers-of-10 notatiqn. The distance from the earth to the moon is about
rod given ] 384,000,009 m, })ut wr'1ting the number in this form gives no indication of the
he percent i nthumber of s1gn1f1capt flgurc?s: Ipstead, Wg: move the'decimal p;)int eight places to
can some- | e left (corresponding to dividing by 10%) and multiply by 108, That is,
3 384,000,000 m = 3.84 X 10®m
y. Instead, §
ignificant In this form, it is clear that we have three significant figures. The number

* this book 4.00 X 1077 also has three significant figures, even though two of them are zeros.

RY
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Note that in scientific notation the usual practice is to express the quantity as a
number between 1 and 10 multiplied by the appropriate power of 10. Table 1.1
summarizes the rules for significant figures.

Table 1.1 Using Significant Figures

Mathematical operation Significant figures in result

No more than in the number with the fewest

significant figures

Example: (0.745 X 2.2)/3.885 = 0.42

Example: (1.32578 X 107) X (4.11 X 1073) = 5.45 X 10*
Determined by the number with the smallest uncertainty

(i.e., the fewest digits to the right of the decimal point)
Example: 27.153 + 138.2 — 11.74 = 153.6

Note: In this book we will usually give numerical values with three significant figures.

Multiplication or division

Addition or subtraction

When an integer or a fraction occurs in a general equation, we treat that num-
ber as having no uncertainty at all. For example, in the equation
v2 = v, + 2a,(x — x,), which is Eq. (2.13) in Chapter 2, the coefficient 2 is
exactly 2. We can consider this coefficient as having an infinite number of signif-
icant figures (2.000000 . . . ). The same is true of the exponent 2 in v, and v,

Finally, let’s note that precision is not the same as accuracy. A cheap digital
watch that says the time is 10:35:17 a.m. is very precise (the time is given to the
second), but if the watch runs several minutes slow, then this value isn’t very
accurate. On the other hand, a grandfather clock might be very accurate (that is,
display the correct time), but if the clock has no second hand, it isn’t very precise.
A high-quality measurement, like those used to define standards (Section 1.3), is
both precise and accurate.

E0][ T . . S
13 Significant figures in multiplication

The rest energy E of an object with rest mass m is given by Ein-
stein’s equation

Since the value of m was given to only three significant figures, we
must round this to

E = mc? E =819 X 107 kg-m?%s? = 8.19 X 107*J

where c is the speed of light in a vacuum. Find E for an object with
m = 9.11 X 1073 kg (to three significant figures, the mass of an
electron). The ST unit for E is the joule (J); 1 J = 1 kg-m?/s2.

IDENTIFY and SET UP: Our target variable is the energy E. We are
given the equation to use and the value of the mass m; from Section
1.3 the exact value of the speed of light is ¢ = 299,792,458
m/s = 2.99792458 X 10 m/s.

EXECUTE Substituting the values of m and c into Einstein’s equa-
tion, we find
E = (9.11 X 107* kg) (2.99792458 X 10 m/s)?
= (9.11)(2.99792458)2(1073!) (10%)? kg - m*/s?
= (81.87659678) (101731 * (>3 kg . m¥/s?
= 8.187659678 X 107 '* kg -m?/s?

Most calculators use scientific notation and add exponents auto-
matically, but you should be able to do such calculations by hand
when necessary.

EVALUATE: While the rest energy contained in an electron may
seem ridiculously small, on the atomic scale it is tremendous. Com-
pare our answer to 107" J, the energy gained or lost by a single
atom during a typical chemical reaction; the rest energy of an elec-
tron is about 1,000,000 times larger! (We will discuss the signifi-
cance of rest energy in Chapter 37.)
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fgeals.il F8et Your Understanding
The density of a material is equal to its mass divided by its volume. What is the
density (in kg/m®) of a rock of mass 1.80 kg and volume 6.0 X 10™* m3? Make
sure your answer has the correct number of significant figures.
1.6 | Estimates and Orders of Magnitude
5% 10*
ny We have stressed the importance of knowing the accuracy of numbers that rep-
) resent physical quantities. But even a very crude estimate of a quantity often
. gives us useful information. Sometimes we know how to calculate a certain
. quantity but have to guess at the data we need for the calculation. Or the calcu-
at num- Jation might be too complicated to carry out exactly, so we make some rough
Juation approximations. In either case our result is also a guess, but such a guess can be
ent 2 is useful even if it is uncertain by a factor of two, ten, or more. Such calculations
f signif- are often called order-of-magnitude estimates. The great Italian American
Twg2. nuclear physicist Enrico Fermi (1901-1954) called them “back-of-the-envelope
) digital calculations.”
n to the Exercises 1.18 through 1.29 at the end of this chapter are of the estimating, or
V't very “order-of-magnitude,” variety. Some are silly, and most require guesswork for the
(that is, needed input data. Don’t try to look up a lot of data; make the best guesses you
precise. can. Even when they are off by a factor of ten, the results can be useful and
1.3), is interesting.
An order-of-magnitude estimate
ures. we You are writing an adventure novel in which the hero escapes  British units of around 200,000 1b, or 100 tons. Whether the precise
T across the border with a billion dollars worth of gold in his suitcase.  number is closer to 50 tons or 200 tons doesn’t matter. Either way,
[s this possible? Would that amount of gold fit in a suitcase? Would  the hero is not about to carry it across the border in a suitcase.
it be too heavy to carry? We can also estimate the volume of this gold. If its density were
ats auto- the same 3as that of water (1 g/cm?), the vol.ume woulq be 108'cm3,
by hand " or 100 m”. But gold is a heavy metal; we might guess its density to
IDENTIFY, SET UP, and EXECUTE Gold sells for around $400 an  be ten times that of water. Gold is actually 19.3 times as dense as
ounce. On a particular day the price might be $200 or $600, but ~ water. But by guessing ten, we find a volume of 10 m®. Visualize
ron may never mind. An ounce is about 30 grams. Actually, an ordinary  ten cubical stacks of gold bricks, each 1 meter on a side, and ask
us. Com- (avoirdupois) ounce is 28.35 g; an ounce of gold is a troy ounce,  yourself whether they would fit in a suitcase!
a single which is 9.45% more. Again, never mind. Ten dollars’ worth of
*ani elec: gold has a mass somewhere around one gram, so a billion (10°)  EVALUATE: Clearly, your novel needs rewriting. Try the calcula-
> signifi- dollars worth of gold is a hundred million (10%) grams, or a hun-  tion again with a suitcase full of five-carat (1-gram) diamonds,

dred thousand (10°) kilograms. This corresponds to a weight in

Test Your Understanding

each worth $100,000. Would this work?

C an you estimate the total number of teeth in all the mouths of everyone (students,
staff, and faculty) on your campus? (Hint: How many teeth are in your mouth?

Count them!)
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1.7 | Vectors and Vector Addition

Some physical quantities, such as time, temperature, mass, density, and electric
charge, can be described completely by a single number with a unit. But many
other important quantities have a direction associated with them and cannot be
described by a single number. Such quantities play an essential role in many of the
central topics of physics, including motion and its causes and the phenomena of
electricity and magnetism. A simple example of a quantity with direction is the
motion of an airplane. To describe this motion completely, we must say not only
how fast the plane is moving, but also in what direction. To fly from Chicago to
New York, a plane has to head east, not south. The speed of the airplane combined
with its direction of motion together constitute a quantity called velocity. Another
example is force, which in physics means a push or pull exerted on a body. Giv-
ing a complete description of a force means describing both how hard the force
pushes or pulls on the body and the direction of the push or pull.

When a physical quantity is described by a single number, we call it a scalar
quantity. In contrast, a vector quantity has both a magnitude (the “how much”
or “how big” part) and a direction in space. Calculations with scalar quantities use
the operations of ordinary arithmetic. For example, 6 kg + 3kg = 9 kg, or
4 X 2's = 8 s. However, combining vectors requires a different set of operations.

To understand more about vectors and how they combine, we start with the
simplest vector quantity, displacement. Displacement is simply a change in posi-
tion of a point. (The point may represent a particle or a small body.) In Fig. 1.6a
we represent the change of position from point P, to point P, by a line from P, to
P,, with an arrowhead at P, to represent the direction of motion. Displacement is
a vector quantity because we must state not only how far the particle moves, but
also in what direction. Walking 3 km north from your front door doesn’t get you
to the same place as walking 3 km southeast; these two displacements have the
same magnitude, but different directions.

Handwritten notation: # or # We usually represent a vector quantity such as displacement by a single letter,
- such as A in Fig. 1.6a. In this book we always print vector symbols in boldface
.Pz italic type with an arrow above them. We do this to remind you that vector quan-

tities have different properties from scalar quantities; the arrow is a reminder that
vectors have direction. In handwriting, vector symbols are usually underlined or
written with an arrow above them (Fig. 1.6). When you write a symbol for a vec-
P, tor, always write it in one of these ways. If you don’t distinguish between scalar
and vector quantities in your notation, you probably won’t make the distinction in
your thinking either, and hopeless confusion will result.

B

P When drawing any vector, we always draw a line with an arrowhead at its tip.
NP3 The length of the line shows the vector’s magnitude, and the direction of the line

A /\ shows the vector’s direction. Displacement is always a straight-line segment,
}f,( directed from the starting point to the end point, even though the actual path of the

particle may be curved. In Fig. 1.6b the particle moves along the curved path

(b) shown from P, to P,, but the displacement is still the vector A. Note that displace-

ment is not related directly to the total distance traveled. If the particle were to

1.6 (a) Vector A is the displacement from continue on to P; and then return to P, the displacement for the entire trip would
point P; to point P,. (b) A displacement is be zero.

always a straight-line segment directed If two vectors have the same direction, they are parallel. If they have the

irvoelg it?fhsetzlggagl%(;fit:);gfv:gé&(ﬂ:;’a same magnitude and the same direction, they are equal, no matter where they are

located in space. The vector A’ from point P to point P, in Fig. 1.7 has the same

path ends at the same place where it
started, the displacement is zero. length and direction as the vector A from P, to P,. These two displacements are
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1.7 | Vectors and Vector Addition

en though they start at different points. We write this as A = A’ in Fig.
ce equals sign to emphasize that equality of two vector quan-
Jationship as equality of two scalar quantities. Two vector
they have the same magnitude and the same

equal, ev
1.7, using a boldfa
tities is not the same 1€
guantities are equal only when

direction. Y ) = . . o
The vector B in Fig. 1.7, however, is not equal to A because its direction is

opposite to that of A. We define the negative of a vector asa vector having .the
same magnitude as the original vector but the opposite direction. The negative
of vector quantity A. is denoted as —A, and we use a boldface minus sign to
emphasize the vector nature of the quantities. If A is 87 m south, then —A is 87 m
north. Thus the relation between A and B of Fig. 1.7 may be written as A = —B
or B = —A. When two vectors A and B have opposite directions, whether their
magnitudes are the same or not, we say that they are antiparallel.

We usually represent the magnitude of a vector quantity (its length in the case
of a displacement vector) by the same letter used for the vector, but in light italic
type with no arrow on top, rather than boldface italic with an arrow (which is
reserved for vectors). An alternative notation is the vector symbol with vertical

bars on both sides:
(Magnitude of;{) =A= |;{| (1.2)

By definition the magnitude of a vector quantity is a scalar quantity (a number)
and is always positive. We also note that a vector can never be gqual to a scalar
because they are different kinds of quantities. The expression “A = 6 m” is just
as wrong as “2 oranges = 3 apples” or “61b =7 km”!

When drawing diagrams with vectors, we’ll generally use a scale similar to
those used for maps, in which the distance on the diagram is proportional to the
magnitude of the vector. For example, a displacement of 5 km might be repre-
sented in a diagram by a vector 1 cm long, since an actual-size diagram wouldn’t
be practical. When we work with vector quantities with units other than displace-
ment, such as force or velocity, we must use a scale. In a diagram for force vectors
we might use a scale in which a vector that is 1 cm long represents a force of mag-
nitude 5 N. A 20-N force would then be represented by a vector 4 cm long, with
the appropriate direction.

Vector Addition

Now suppose a particle undergoes a displacement Z, followed by a second dis-
placement B (Fig. 1.8a). The final result is the same as if the particle had started
at the same initial point and undergone a single displacement C, as shown. We call
displacement C the vector sum, or resultant, of displacements A and B. We
express this relationship symbolically as

C=A+B (1.3)
The boldface plus sign emphasizes that adding two vector quantities requires a
geometrical process and is not the same operation as adding two scalar quantities
suchas 2 + 3 = 5. In vector addition we usually place the tail of the second vec-
tor at the head, or tip, of the first vector (Fig. 1.8a).
If we make the displacements A and B in reverse order, with B first and A sec-
ond, the result is the same (Fig. 1.8b). Thus

C=B+A and A+B=B+A4A (1.4)

15

P, P, Ps

[ ]

A A=A B=-4
Pl P3 P6

1.7 The displacement from P; to P, is
equal to that from P, to P,. The displace-
ment B from Ps to Fy has the same magni-
tude as A and A’ but opposite direction;
displacement B is the negative of displace-
ment A.

1.8 Vector C is the vector sum of vectors
A and B. The order in vector addition
doesn’t matter; vector addition is commu-
tative.
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A B This shows that the order of terms in a vector sum doesn’t matter. In other words,
S —— vector addition obeys the commutative law.
m Figure 1.8c shows an alternative representation of the vector sum. When vectors
() A and B are both drawn with their tails at the same point, vector Cisthe diagonal
i of a parallelogram constructed with A and B as two adjacent sides.
e FICAUTIONT A word of warning is in order about vector addition. It's a com-
C=4A+B ) B mon error to conclude that if C = A + f}, the magnitude C should just equal
(b) the magnitude A plus the magnitude B. Figure 1.8 shows that in general, this
conclusion is wrong; you can see from the figure that C <A + B. The magni-
1.9 (a) In the special case when vectors tude of the vector sum A + B depends on the magnitudes of 4 and of B and on
A and B are parallel, and only in this the angle between A and B (see Problem 1. 88). Only in the special case in which
fﬁ:i’uﬁeo?giﬁmmd:ggigféz:ng:guj_lsB' A and B are parallel is the magnitude of C=4A+B equal to the sum of the
(b) When A and B are antiparallel, the magnitudes of A and B (Fig. 1.95). By contrast, when the vectors are antlparaL-
magnitude of their sum equals the differ- lel (Fig. 1.9b) the magnitude of C equals the difference of the magnitudes of A
ence of their magnitudes: C = |A — B|. and B. Students who aren’t careful about distinguishing between scalar and
Note that the vectors A, B, and C in part vector quantities frequently make errors about the magnitude of a vector sum.
(a) are not the same as the vectors A, B, Don't let this happen to you!
and C in part (b).

When we need to add more than two vectors, we may first find the vector sum
of any two, add this vectorially to the third, , and so on. Figure 1.10a shows three
vectors A B and C In Fig. 1.10b, vectors A and B are added first, giving a vec-
tor sum D; vectors C and D are then added by the same process to obtain the vec-
tor sum l_é:

R=(A+B)+C=D+C

Alternatively, we can first add BandC (Fig. 1.10c) to obtain vector E and then add
A and E to obtain R:

R=A+(B+C)=4A+E

We don’t even need to draw vectors D and E; all we need to do is draw the given
vectors in succession, with the tail of each at the head of the one preceding it, and
complete the polygon by a vector R from the tail of the first vector to the head of
the last vector (Fig. 1.10d). The order makes no difference; Fig. 1.10e shows a dif-
ferent order, and we invite you to try others. We see that vector addition obeys the
associative law.

We mentioned above that —A is a vector having the same magnitude as A but
the opposite direction. This provides the basis for defining vector subtraction. We
define the difference A — B of two vectors A and B to be the vector sum of A and
-B:

Bl
o

A-B=A4+ (-B) (1.5)

Figure 1. .11 shows an example of vector subtraction. To construct the vector dif-
ference A — B, the tail of —B is placed at the head of A.

A vector quantity such as a displacement can be multiplied by a scalar quantity
(an ordinary number). The displacement 24 isa displacement (vector quantity) in
the same direction as the vector A but twice as long; this is the same as adding A
1.10 Severa] constructions for finding the ~ t0 itself. In general, when a vector Ais multiplied by a scalar c, the result cA has
vector sum A + B + C. magnitude IclA (the absolute value of ¢ multiplied by the magnitude of the vector

(e)
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A) If ¢ is positive, cA is in the same direction as A if cis negatlve cA is in the
direction opposite to A. Thus 54 is parallel to A, while —54 is antiparallel to A.
The scalar quantity used to multiply a vector may also be a physical quantlty
having units. For example, you may be familiar with the relationship F= ma; the
net force F (a vector quantity) that acts on a body is equal to the product of the
body’s mass m (a positive scalar quantity) and its acceleration d (a vector quantity).
The magnitude of the net force is equal to the mass (which is positive and equals its
own absolute value) multiplied by the magnitude of the acceleration. The unit of
the magnitude of force is the unit of mass multiplied by the unit of the magnitude
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1.11 (a) Vector _1;1' and vector B. (b) Vector
A and vector —B. (c) The vector differ-
ence A — B is the sum of vectors A and
—B The tail of —B is s placed at the head
of A. (d) To check: (A — B) + B = A.

of acceleration. The direction of F is the same as that of @ because m is positive.

Vector addition

A cross-country skier skis 1.00 km north and then 2.00 km east on
a horizontal snow field. a) How far and in what direction is she
from the starting point? b) What are the magnitude and direction of
her resultant displacement?

IDENTIFY: The problem involves combining displacements, so we
can solve it using vector addition. The target variables in part (a) are
the skier’s total distance and direction from her starting point. Note
that the target variables in part (b) are the same as those in part
(a): the “magnitude of her resultant displacement” is just her final
distance from the point of origin, and the “direction of her resultant
displacement” is just the direction from the point of origin to where
she stops.
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1.12 The vector diagram, drawn to scale, for a cross-country ski
trip.

SET UP: Figure 1.12 is a scale diagram of the skier’s displacements.
We describe the direction from the starting point by the angle ¢ (the
Greek letter “phi”). By careful measurement we find that the distance
from the starting point is about 2.2 km and that ¢ is about 63°. But we
can calculate a much more accurate result by adding the 1.00-km and
2.00-km displacement vectors.

EXECUTE: a) The vectors in the diagram form a right triangle; the
distance from the starting point is equal to the length of the
hypotenuse. We find this length by using the Pythagorean theorem:

V/(1.00km)? + (2.00km)? = 2.24 km

The angle ¢ can be found with a little simple trigonometry. If you
need a review, the trigonometric functions and identities are sum-
marized in Appendix B, along with other useful mathematical and
geometrical relations. By the definition of the tangent function,

__opposite side  2.00 km
B adjacent side ~ 1.00km
¢ = 634°

tan

b) The magnitude of the resultant displacement is just the distance
that we found in part (a), 2.24 km. We can describe the direction as
63.4° east of north or 90° — 63.4° = 26.6° north of east. Take your
choice!

EVALUATE: It’s good practice to check the results of a vector-addition
problem by making measurements on a drawing of the situation.
Happily, the answers we found by calculation (2.24 km and
¢ = 63.4°) are very close to the cruder results we found by mea-
surement (about 2.2 km and about 63°). If they were substantially
different, we would have to go back and check for errors.
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Test Your Understanding
If the skier had first gone 2.00 km east from her starting point, then 1.00 km

north, what would have been the magnitude and direction of her resulting dis-
placement?

1.8 | Components of Vectors

y In Section 1.7 we added vectors by using a scale diagram and by using properties
of right triangles. Measuring a diagram offers only very limited accuracy, and cal-
culations with right triangles work only when the two vectors are perpendicular.
: So we need a simple but general method for adding vectors. This is called the
J| method of components.

X To define what we mean by the components of a vector, we begin with a rec-
tangular (Cartesian) coordinate system of axes (Fig. 1.13). We then draw the vec-
tor we’re considering with its tail at O, the origin of the coordinate system. We can
puleE ComponeHE vetos oA th the dires, represent any vector lying in the xy-plane as the sum of a vector parallel to the x-
tions of the x- and y-axes. For the vector A axis and a vector parallel to the y-axis. These two vectors are labeled A and A in
shown here, the components A, and A, are the figure; they are called the component vectors of vector A and their vector
both positive. sum is equal to A.In symbols,

1.13 Vectors ZX and Xy are the rectan-

A=A4,+A4, (1.6)

By definition, each component vector lies along a coordinate-axis direction.
Thus we need only a single number to describe each one. When the component
vector A points in the positive x-direction, we define the number A, to be equal
to the magnitude of A When the component vector Ax points in the negative x-
direction, we define the number A, to be equal to the negative of that magnitude,
keeping in mind that the magnitude of a vector quantity is itself never negative.
We define the number A, in the same way. The two numbers A, and A, are called
the components of A.

[ICAUTIONT The components A, and A, of a vector A are just numbers; they are
not vectors themselves. This is why we print the symbols for components in light
italic type with no arrow on top instead of the boldface italic with an arrow
reserved for vectors.

We can calculate the components of the vector A if we know its magnitude A
and its direction. We’ll describe the direction of a vector by its angle relative to
some reference direction. In Fig. 1.13 this reference direction is the positive x-
axis, and the angle between vector A and the positive x-axis is 6 (the Greek letter
“theta”). Imagine that the vector A originally lies along the +x-axis and that you
then rotate it to its correct direction, as indicated by the arrow in Fig. 1.13 on the
angle 0. If this rotation is from the +x-axis toward the +y-axis, as shown in Fig.
1.13, then 6 is positive; if the rotation is from the +x-axis toward the —y-axis, 6 is
negative. Thus the +y-axis is at an angle of 90°, the —x-axis at 180°, and the
—y-axis at 270° (or —90°). If 0 is measured in this way, then from the definition
of the trigonometric functions,
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sin 6

Il

= cos 6 and

> |

Ay
A

A, =Acosf® and A,=Asin6

Y
(6 measured from the +x-axis, rotating toward the +y-axis)

LEAUTION' Equations (1.7) are correct only when the angle 6 is measured from
axis as described above. If the angle of the vector is given from a
different reference direction or using a different sense of rotation, the rela-
tionships are different. Be careful! Example 1.6 illustrates this point.

the positive x-
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1.7

- wanem
.

In

Fig. 1.13, A, is positive because its direction is along the positive x-axi§ and
A, is positive because its direction is along the positive y-axis. This is con31stf=,nt
with Eqgs. (1.7); 6 is in the first quadrant (between 0° and 90°), and both the cosine
and the sine of an angle in this quadrant are positive. But in Fig. 1.14a the com-

1.14 The components of a vector may be

ponent B, is negative; its direction %s opposite to th?t of the positive x-axis: Again, positive or negative numbers.
this agrees with Eqgs. (1.7); the cosine of an angle in the second quadrant is nega-
tive. The component B, is positive (sin 6 is positive in the second quadrant). In
Fig. 1.14b, both C, and C, are negative (both cos 6 and sin 6 are negative in the

third quadrant).

l & o o
Finding components

a) What are the x- and y-components of vector Din Fig. 1.15a? The
magnitude of the vector is D = 3.00 m and the angle o = 45°.

b) What are the x- and y-components of vector E in Fig. 1.15b? The
magnitude of the vector is E = 4.50 m and the angle 8 = 37.0°.

IDENTIFY and SET UP: The problem involves finding compo-
nents, so it would seem that all we need is Eqgs. (1.7). However, we
need to be careful because the angles in Fig. 1.15 are not measured
from the +x-axis toward the +y-axis.

incline; one axis will lie along the ramp and the other will be per-
pendicular to the ramp.) R
Here the angle B (the Greek letter “beta”) is the angle between E
and the positive y-axis, not the positive x-axis, so we cannot use this
angle in Eqgs. (1.7). Instead, note that E defines the hypotenuse of a right
triangle; the other two sides of the triangle are the magnitudes of £, and
E,, the x- and y-components of E. The sine of B is the opposite side (the
magnitude of E,) divided by the hypotenuse (the magnitude E), and the
cosine of B is the adjacent side (the magnitude of E\) divided by
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the hypotenuse (again, the magnitude E). Both components of E are If you i insist on using Egs. (1.7), you must first find the angle
positive, so between E and the positive x-axis, measured toward the positive

; . = °—B= P © = 53.0°. Then
E,=E = (4.50 37.0°) = +2.71m y-axis; this is 6 = 90.0° — 8 = 90.0° — 37.0° = 53.0
sinf = ( ) {sin ) E, = Ecos 6 and E, = E sin 0. You can substitute the values of E

E, = Ecos B = (4.50m) (cos 37.0°) = +3.59m and 6 into Eqgs. (1.7) to show that the results for E, and E, are the
Had you used Eqs. (1.7) directly and written E, = E cos 37.0° and  same as given above.

E, = E'sin 37.0° your answers for E, and E, would have been EVALUATE: Notice that the answers to part (b) have three significant
reversed! figures, but the answers to part (a) have only two. Can you see why?

Using Components to Add Vectors

We can describe a vector completely by giving either its magnitude and direction
or its x- and y-components. Equations (1.7) show how to find the components if
we know the magnitude and direction. We can also reverse the process: we can
find the magnitude and direction if we know the components. By applying the
Pythagorean theorem to Fig. 1.13, we find that the magnitude of a vector A is

=VAZ +A? (1.8)

where we always take the positive root. Equation (1.8) is valid for any choice of
x-axis and y-axis, as long as they are mutually perpendicular. The expression for
the vector direction comes from the definition of the tangent of an angle. If 0 is
measured from the positive x-axis, and a positive angle is measured toward the
positive y-axis (as in Fig. 1.13), then

6= ana 0 A 1.9
t =— an = arctan — .
an A A (1.9)

We will always use the notation arctan for the inverse tangent function. The
notation tan ! is also commonly used, and your calculator may have an INV but-
ton to be used with the TAN button. Microsoft Excel uses ATAN.

CAUTION™ There is one slight complication in using Egs. (1.9) to find . Sup-
pose A, = 2mand A, = —2m; then tan § = —1. But there are two angles having
tangents of —1, namely, 135° and 315° (or —45°). In general, any two angles that
differ by 180° have the same tangent. To decide which is correct, we have to
look at the individual components. Because A, is positive and A, is negative, the
angle must be in the fourth quadrant; thus 8 = 315° (or —45°) is the correct
value. Most pocket calculators give arctan(—1) = —45°. In this case that is cor-
rect; but if instead we have A, = —2m and A, = 2m, then the correct angle is
135°. Similarly, when 4, and A, are both negative, the tangent is positive, but
the angle is in the third quadrant. You should always draw a sketch to check
which of the two possibilities is the correct one.

Here’s how we use components to calculate the vector sum (resultant) of two
or more vectors. Figure 1.16 shows two vectors A and B and their vector sum R,
along with the x- and y-components of all three vectors. You can see from the dia-
gram that the x-component R, of the vector sum is simply the sum (A, + B,) of
the x-components of the vectors being added. The same is true for the y-compo-
nents. In symbols,

RESFATSER e TRA=ASE B (components of R = A + B) (1.10)
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ws this result for the case in which the components A,, A, B, and
You should draw additional diagrams to verify for yourself that
d for any signs of the components of A and B.

Figure 1.16 sho
B, are all positive.

EQs (1.10) are vali |
[f we know the components of any two vectors A and B, perhaps by using

n compute the components of the vector sum R. Then if we need
d direction of R, we can obtain them from Egs. (1.8) and (1.9)

Egs. (1.7), we ca
the magnitude an

with the A’s replaced by R’s.
This procedure for finding the sum of two vectors can be extended to any num-

ber of vectors. Let R be the vector sum of A, E, E‘, f), ﬁ, ... . Then the compo-
nents ofié are
R,=A,+B,+C+D+E+ ---
Ry=Ay+By+Cy+Dy+Ey+-~- (1.11)

We have talked only about vectors that lie in the xy-plane, but the component
method works just as well for vectors having any direction in space. We introduce
a z-axis perpendicular to the xy-plane; then in general a vector A has components
A, A,, and A, in the three coordinate directions. The magnitude A is given by

A=VA?+ A2+ A} (1.12)

Again, we always take the positive root. Also, Egs. (1.11) for the components of
the vector sum R have an additional member:

R=A,+B,+C,+D,+E + -

Finally, while our discussion of vector addition has centered on combining dis-
placement vectors, the method is applicable to all other vector quantities as well.
When we study the concept of force in Chapter 4, we’ll find that forces are vec-
tors that obey the same rules of vector addition that we’ve used with displace-
ment. Other vector quantities will make their appearance in later chapters.

Strategy Vector Addition

21

1.16 Vector R is the vector sum (resultant)
of A and B. Its x-component, RX,_’equals_.
the sum of the x-components of A and B.
The y-components are similarly related.

IDENTIFY the relevant concepts and SET UP the problem:
Decide what your target variable is. It may be the magnitude of
the vector sum, the direction, or both. Then draw the individual
vectors being summed and the coordinate axes being used. In
your drawing, place the tail of the first vector at the origin of
coordinates; place the tail of the second vector at the head of
the first vector; and so on. Draw the vector sum R from the tail
of the first vector to the head of the last vector. By examining
your drawing, make a rough estimate of the magnitude and

direction of R; you’ll use these estimates later to check your
calculations.

EXECUTE the solution as follows:
I. Find the x- and y-components of each individual vector
and record your results in a table. If a vector is described
by its magnitude A and its angle , measured from the

+x-axis toward the +y-axis, then the components are
given by

A, = Acosf A,=Asinb

Some components may be positive and some may be
negative, depending on how the vector is oriented (that is,
what quadrant 6 lies in). You can use this sign table as a
check:

Quadrant I 1I 111 v
A, + = = +
A + o+ — -

)

If the angles of the vectors are given in some other way,
perhaps using a different reference direction, convert
them to angles measured from the +x-axis as described
above. Be particularly careful with signs.
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2. Add the individual x-components algebraically, including
signs, to find R, the x-component of the vector sum. Do
the same for the y-components to find R,.

3. Then the magnitude R and direction 6 of the vector sum
are given by

R=VR?+R?

9 = arctan—

arc anRx

EVALUATE your answer: Check your results for the magnitude
and direction of the vector sum by comparing them with the
rough estimates you made from your drawing. Remember that

the magnitude R is always positive and that 6 is measured from
the positive x-axis. The value of 6 that you find with a calcula-
tor may be the correct one, or it may be off by 180°. You can
decide by examining your drawing.

If your calculations disagree totally with the estimates from
your drawing, check whether your calculator is set in “radians”
or “degrees” mode. If it’s in “radians” mode, entering angles in
degrees will give nonsensical answers. Watch out for this prob-
lem if you use Microsoft Excel, in which all trigonometric func-
tions use units of radians rather than degrees. To convert from
one to the other, remember that 360 degrees is the same as 27
radians.

Adding vectors with components

The three finalists in a contest are brought to the center of a large,
flat field. Each is given a meter stick, a compass, a calculator, a
shovel, and (in a different order for each contestant) the following
three displacements:

72.4 m, 32.0° east of north;
57.3 m, 36.0° south of west;
17.8 m straight south.

The three displacements lead to the point where the keys to a
new Porsche are buried. Two contestants start measuring imme-
diately, but the winner first calculates where to go. What does
she calculate?

IDENTIFY and SET UP: The situation is shown in Fig. 1.17. We
have chosen the +x-axis as east and the +y-axis as north, the usual
choice for maps. Let Abe the first displacement, B the second, and
C the third. We can estimate from the diagram that the vector sum
R is about 10 m, 40° west of north.

EXECUTE: The angles of the vectors, measured from the +x-axis
toward the +y-axis, are (90.0° — 32.0°) = 58.0°, (180.0° +
36.0°) = 216.0°, and 270.0°. We have to find the components of
each. Because of our choice of axes, we may use Egs. (1.7), and so
the components of A are

A, =Acos6, = (724 m)(cos 58.0°) = 38.37m
A, =Asinf, = (724m)(sin58.0°) =61.40m

Note that we have kept one too many significant figures in the
components; we will wait until the end to round to the correct num-
ber of significant figures. The table below shows the components of
all the displacements, the addition of components, and the other
calculations. Always arrange your component calculations system-
atically like this.

Distance Angle x-component  y-component
A=724m 58.0° 38.37m 61.40 m
B=573m 216.0° —46.36 m —33.68 m
C=178m 270.0° 0.00 m —17.80 m
R, =—-799m R, =992m

R=V(-79m)? + (992m)? = 127m

— . 129° = 39° west of north

8 = s —
e 9om

The losers try to measure three angles and three distances totaling
147.5 m, one meter at a time. The winner measured only one angle
and one much shorter distance.

y (north)
36°
573 m
B
- Af724m
17.8 m :C
32°
A
R x (east)
0

1.17 Three successive displacements A, B and C and the resul-
tant (vector sum) dlsplacementR A+B+C.
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EVALUATE: Our
ent from our esti
Notice that 0 = —

A vector in three dimensions

After an airplane takes off, it travels 10.4 km west, 8.7 km north, SOLUTION

and 2.1 km up. How far is it from the takeoff point?
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calculated answers for R and 6 are not too differ-  tion for 6. But since the winner has made a drawing of the dis-
mates of 10 m and 40° west of north; that’s good!  placement vectors (Fig. 1.17), she knows that 6 = 129° is the only
51°, or 51° south of east, also satisfies the equa-  correct solution for the angle.

Let the +x-axis be east, the +y-axis north, and the +z-axis up. Then

A, = —104km, A, = 87km,and A, = 2.1 km; Eq. (1.12) gives

A =V(~104km)* + (8.7km)* + (2.1 km)* = 13.7 km

Test Your Understanding

How far are you from your starting point if you first traveled 4.00 km due west,
then 4.00 km due south? What is the direction from where you started to where

you ended up?

1.9 | Unit Vectors

A unit vector is a vector that has a magnitude of 1, with no units. Its only purpose
is to point; that is, to describe a direction in space. Unit vectors provide a conve-
nient notation for many expressions involving components of vectors. We will
always include a caret or “hat” (*) in the symbol for a unit vector to distinguish it
from ordinary vectors whose magnitude may or may not be equal to 1.

[n an x-y coordinate system we can define a unit vector 7 that points in the
direction of the positive x-axis and a unit vector 7 that points in the direction of the
positive y-axis. Then we can express the relationship between component vectors
and components, described at the beginning of Section 1.8, as follows:

-

A =Al
A, = A, j (1.13)
Similarly, we can write a vector A in terms of its components as
A=Ai+Aj (1.14)

Equations (1.13) and (1.14) are vector equations; each term, such as Axi, is a vec-
tor quantity (Fig. 1.18). The boldface equals and plus signs denote vector equality
and addition.

When two vectors A and B are represented in terms of their components, we
can express the vector sum R using unit vectors as follows:

1.18 Using unit vectors, we can express a
vector A in terms of its components A, and
AjasA=Al+ A
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R=A+B
= (A2 +AjJ) + (Bi+Byj)
= (A, +B)i+ (A, +B)j

=Ri+Rj (1.15)

Equation (1.15) restates the content of Egs. (1.10) in the form of a single vector
equation rather than two component equations.

If the vectors do not all lie in the xy-plane, then we need a third component. We
introduce a third unit vector k that points in the direction of the positive z-axis.
The generalized forms of Egs. (1.14) and (1.15) are

A=AQ+Aj+Ak
B=Bi+Bj+Bk (1.16)
R=(A,+B)i+ (A +B)j+ (A +B)k

=Ri+Rj+Rk (1.17)

Example . )
1.9 Using unit vectors

Given the two displacements The units of the vectors 5, I;“, and F are meters, so the compo-

- A PO - " . ~ nents of these vectors are also in meters. From Eq. (1.12),
D= (61+3]—k)m and E = (41 —5] +8k)m

F:\.2 +F*yz +F22
=V(8m)?>+ (11m)?> + (—10m)2 = 17m

find the magnitude of the displacement 2D - E.

IDENTIFY, SET UP, and EXECUTE: Letting l_f' — 25 - E' we have EVALUATE: Working with unit vectors makes vector addition and
. R R ' subtraction no more complicated than adding and subtracting ordi-
F=2(61+3]—k)m— (41 — 5] + 8k)m nary numbers. Still, be sure to check for simple arithmetic errors.

=[(12-4)i+ (6 +5)]+ (-2 — 8)k]m
(82 + 11] — 10k)m

Test Your Understanding

Express each of the vectors Z, E, and C in Example 1.7 (Section 1.8) in terms of
unit vectors.

1.10 | Products of Vectors

We have seen how addition of vectors develops naturally from the problem of
combining displacements, and we will use vector addition for calculating many
other vector quantities later. We can also express many physical relationships con-
cisely by using products of vectors. Vectors are not ordinary numbers, so ordinary
multiplication is not directly applicable to vectors. We will define two different
kinds of products of vectors. The first, called the scalar product, yields a result
that is a scalar quantity. The second, the vector product, yields another vector.
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scalar Product

The scalar product of two vectors A and B is denoted by A - B. Because of this
notation, the scalar product is also called the dot product.
To define the scalar product A- . B of two vectors A and B we draw the two
vectors with their tails at the same point (Fig. 1.19a). The angle between their
directions is ¢ as shown; the angle ¢ always lies between 0° and 180°. (As usual,
we use Greek letters for angles ) Figure 1.19b shows the pro;ectlon of the vector
B onto the direction of A this projection is the component of B parallel to A and
is equal to Bcos ¢. (We can take components along any direction that’s conve-
nient, not just the x- and y-axes. ) We define A-B to be the magnitude of A multi-

plied by the component of B parallel to A Expressed as an equation,

A-B = ABcos ¢ = |A||B|cos ¢ (1.18)
(definition of the scalar (dot) product)

where ¢ ranges from 0° to 180°
Alternatively, we can define A - B to be the magmtude of B multiplied by the com-

ponent of A parallel to B, as in Fig. 1.19c. Hence A - B = B(A cos ¢) = AB cos ¢,
which is the same as Eq. (1.18).

The scalar product is a scalar quantity, not a vector, and it may be positive, neg-
ative. or zero. When ¢ is between 0° and 90°, the scalar product is positive. When
¢ is between 90° and 180°, it is negative. You should draw a diagram like Fig.
1.19, but with ¢ between 90° and 180°, to confirm for yourself that the component
of B parallel to Ais negative in this case, as is the component of A parallel to B.
Finally, when ¢ = 90°, A-B = 0. The scalar product of two perpendicular vec-
tors is always zero.

For any two vectors A and B, AB cos ¢ = BA cos ¢. This means that
A'B = B-A. The scalar product obeys the commutative law of multiplication;
the order of the two vectors does not matter.

We will use the scalar product in Chapter 6 to describe work done by a force.
When a constant force F is applied to a body that undergoes a displacement §, the
work W (a scalar quantity) done by the force is given by

W=F-%§

The work done by the force is positive if the angle between F ands is between 0°
and 90°, negative if this angle is between 90° and 180°, and zero if F and § are
perpendicular. (This is another example of a term that has a special meaning in
physics; in everyday language, “work” isn’t something that can be positive or
negative.) In later chapters we’ll use the scalar product for a variety of purposes,
from calculating electric potential to determining the effects that varying mag-
netic fields have on electric circuits.

We can calculate the scalar product A-B directly if we know the x-, y-, and z-
components of A and B. To see how this is done, let’s first work out the scalar
products of the unit vectors. This is easy, since Z, J, and k are all perpendicular to
each other. Using Eq. (1.18), we find

~>

ii=j-J=kk=(1)(1)cos0 =1

]
=7k =(1)(1)cos90° (1.19)

~>
Il
~>

1

25

1.19 (a) Two vectors drawn from a common
starting point to define their scalar product

A +B = ABcos ¢. (b) B cos_¢ is the compo-
nent of B in the direction of A, and A * B is
the product of the magnitude of A and this
component. (c) A * B is also the product of |
the magnitude of B and the component of A
in the direction of B.
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Now we express A and B in terms of their components, expand the product, and
use these products of unit vectors:

A-B=(Ai+Aj+Ak) (Bi+Bj+Bik)
= AJ-Bi+AJ'Bj+ Ai-Bk
Aj-B.i+ Aj-Bj + Aj-B.k

+Ak-B,i + AjJeBj + Ak Bk

w A

= ABl-1+ABji-]+ABik
+AB.j-1+ ABj-] + AB.jk
+ABJi + AB k-] + ABk-k (1.20)

From Egs. (1.19) we see that six of these nine terms are zero, and the three that
survive give simply

A‘B=AB, +AB, +AB, (1.21)
(scalar (dot) product in terms of components)

Thus the scalar product of two vectors is the sum of the products of their respec-
tive components.

The scalar product gives a straightforward way to find the angle ¢ between any
two vectors A and B whose components are known. In this case, Eq. (1.21) can be
used to find the scalar product of A and B. From Eq. (1.18) the scalar product is
also equal to AB cos ¢. The vector magnitudes A and B can be found from the
vector components with Eq. (1.12), so cos ¢ and hence the angle ¢ can be deter-
mined (see Example 1.11).

Example .
1.10 Calculating a scalar product

Find the scalar product A B of the two vectors in Fig. 1.20. The y
magnitudes of the vectors are A = 4.00 and B = 5.00.

IDENTIFY and SET UP: There are two ways to calculate the scalar
product. The first way uses the magnitudes of the vectors and the
angle between them (Eq. 1.18), and the second uses the compo-
nents of the two vectors (Eq. 1.21).

EXECUTE: Using the first approach, the angle between the two vec-
tors is ¢ = 130.0° — 53.0° = 77.0°, so

A*B = ABcos¢ = (4.00)(5.00)cos 77.0° = 4.50

This is positive because the angle between A and B is between 0°
and 90°. 1.20 Two vectors in two dimensions.



vduct, and

(1.20)

three that

(1.21)

ir respec-

ween any
1) can be
roduct is
from the
be deter-

approach, we first need to find the compo-
s. Since the angles of A and B are given with
d these angles are measured in the sense

To use the second
nents of the two yector

ect to the +x-axis, an .
to the +y-axis, we can use Egs. (1.7):

resp :
from the +x-axis
A, = (4.00)cos 53.0° = 2.407

A = (4.00)sin 53.0° = 3.195
A =0
B, = (5.00)cos 130.0° = -3.214

B, = (5.00)sin 130.0° = 3.830
B,=0

z-components are Zero because both vectors lie in the xy-plane.
n Example 1.7, we are keeping one too many significant figures

The
Asi

Example
1.11

Find the angle between the two vectors

A=2i+3j+k and B=—4i+2j—k

IDENTIEY: The scalar product of two vectors A and B is related to
the angle ¢ between them and to the magnitudes A and B. The
scalar product is also related to the components of the two vectors.
If we are given the components of the vectors (as we are in this

y

1.21 Two vectors in three dimensions.

Vector Product

1.10 | Products of Vectors 27

in the components; we’ll round to the correct number at the end.
From Eq. (1.21) the scalar product is
A-B= AB,+AB, +AB,
= (2.407)(—3.214) + (3.195)(3.830)
+ (0)(0) = 4.50

EVALUATE: We get the same result for the scalar product with both
methods, as we should.

Finding angles with the scalar product

example), we first determine the scalar product A - B and the values
of A and B, and then determine the target variable ¢.

SET UP and EXECUTE: The vectors are shown in Fig. 1.21. The
scalar product of two vectors is given by either Eq. (1.18) or Eq. (1.21).
Equating these two and rearranging, we obtain
AB,+ AB, + A.B,

AB
This formula can be used to find the angle between any two vectors
A and B. For our example the components of A are A, =2,A, =3,
and A, = 1, and the components of B are B, = —4,B, =2, and
B, = —1. Thus

cos ¢ =

A-B=AB, +AB, +AB,
= (2)(—4) + (3)(2) + (1)(=1) = -3
A=VAI+ AL+ AZ=V2+ 3+ =V14
B=\BI+B2+B =V(-#) + 2+ (-1))=V21
A.B, + AB, + A.B, -3

AB V14V21

= —0.175

cos¢p =
¢ = 100°
EVALUATE: As a check on this result, note that the scalar product

A-Bis negative. This means that ¢ is between 90° and 180°, in
agreement with our answer.

The vector product of two vectors A and B, also called the cross product,

is denoted by A X B. We will use this product in Chapter 10 to describe torque
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and angular momentum. Later we will also use it extensively for magnetic fields,
where it will help us describe the relationships among the directions of several
vector quantities.

To define the vector product A X B of two vectors 4 and B, we again draw the
two vectors with their tails at the same point (Fig. 1.22a). The two vectors then lie
in a plane. We define the vector product to be a vector quantity with a direction
perpendicular to this plane (that is, perpendicular to both A and B) and a magni-
tude equal to AB sin ¢. That is, if C=4x 1§, then

C = ABsin ¢ (1.22)

(magnitude of the vector (cross) product of A and B)

We measure the angle ¢ from A toward B and take it to be the smaller of the two
possible angles, so ¢ ranges from 0° to 180°. Thus C in Eq. (1.22) is always pos-
itive, as a vector magnitude should be. Note also that when A and B are parallel
(®) or antiparallel, ¢ = 0 or 180° and C = 0. That is, the vector product of two par-
allel or antiparallel vectors is always zero. In particular, the vector product of any

. : vector with itself is zero. To see the contrast between the scalar product and the
vector product A X B is perpendicular to . . . = >
this plane in a direction determined by the magnitude of the Yector pr.oduct, imagine that we vary the angle between A and B
right-hand rule. (b) B X A = —A x B:the While keeping their magnitudes constant. When A and B are parallel, the scalar
vector product is anticommutative. product will be maximum and the magnitude of the vector product will be zero.
When A and B are perpendicular, the scalar product will be zero and the magni-
tude of the vector product will be maximum.

There are always two directions perpendicular to a given plane, one on each side
of the plane. We choose which of these is the direction of A X B as follows. Imag-
ine rotating vector A about the perpendicular line until it is aligned with 1}, choos-
ing the smaller of the two possible angles between A and B. Curl the fingers
of your right hand around the perpendicular line so that the fingertips point in the
direction of rotation; your thumb will then point in the direction of A X B. This
right-hand rule is shown in Fig. 1.22a. The direction of the vector product is also
the direction in which a right-hand screw advances if turned from A toward B, as
shown.

Similarly, we determine the direction of B X A by rotating B into A in Fig. 1.22b.
The result is a vector that is opposite to the vector A X B. The vector product is
not commutative! In fact, for any two vectors A and E’,

1.22 (a) Vectors A and Blieina plane; the

AXB=-BxA4 (1.23)

Just as we did for the scalar product, we can give a geometrical interpreta-
tion of the magnitude of the vector product. In Fig. 1.23a, B sin ¢ is the com-
ponent of vector B that is perpendicular to the direction of vector A. From
Eq. (1.22) the magnitude of A XB equals the magnitude of A multiplied by

(b) the component of B perpendicular to A. Figure 1.23b shows that the magni-
tude of A X B also equals the magnitude of B multiplied by the component of
1.23 (a) B sin ¢ is the component of B A perpendicular to B. Note that Fig. 1.23 shows the case in which ¢ is between

perpendicular to the direction of A, and the  ()° and 90°: you should draw a similar diagram for ¢ between 90° and 180° to

magnitude of A X B is the product of show that the same geometrical interpretation of the magnitude of A x B still
the magnitude of A and this component.

(b) The magnitude of A X B  is also the applies. - g
product of the magnitude of B and the If we know the components of A and B, we can calculate the components of
component of A perpendicular to B. the vector product, using a procedure similar to that for the scalar product. First
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1.10 | Products of Vectors

out the multiplication table for the unit vectors 7, J, and k. The vector

we work o ‘
product of any vector with itself is zero, so

ixi=jxj=kxk=0

The boldface zero is 2 reminder that each product is a zero vector—that is, one
with all components equal to zero and an undefined direction. Using Egs. (1.22)
and (1.23) and the right-hand rule, we find

ixj=-jxi=k
jxk=-kxj=1
kxi=-ixk=] (1.24)

Next we express A and B in terms of their components and the corresponding
unit vectors, and we expand the expression for the vector product:

A x B=(Ad+Aj+Ak) x (Bi+B,j + Bk)
= A X Bj +Aj X Bjj +Aji X Bk
+Aj X Bi+AjXBj+AjxBk

+Ak X Bi + Ak X B,j + Ak x Bk (1.25)

We can also rewrite the individual terms as A,Z X B,j = (AB,)7 X j,and so on.

Evaluating these by using the multiplication table for the unit vectors and then
grouping the terms, we find

A xB=(AB,— AB,)i+ (AB, — AB)] + (AB, — AB)k (1.26)

Thus the components of C = A x Bare given by

BEWIRNSAR ' lic,—AB. —AB, ' C,=AB,—ApB,

Z y Y

(components of C=4 x f?) (1.27)
The vector product can also be expressed in determinant form as

k

B>

1
AXB=|A
B

=

y A
B

oo

X y z

If you aren’t familiar with determinants, don’t worry about this form.

With the axis system of Fig. 1.24a, if we reverse the direction of the z-axis, we
get the system shown in Fig. 1.24b. Then, as you may verify, the definition of the
vector product gives 7 X j = —kinstead of 1 X j = k.Infact, all vector products
of the unit vectors 2, f, and k would have signs opposite to those in Egs. (1.24).
We see that there are two kinds of coordinate systems, differing in the signs of the
.\'ccmr products of unit vectors. An axis system in which 1 X j = k,asinFig. 1.24a,
1§ called a right-handed system. The usual practice is to use only right-handed
systems, and we will follow that practice throughout this book.
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1.24 (a) A right-handed coordinate sys-
tem, in which X j =k, ] X k = 7,and
k x 1 = J. (b) Aleft-handed coordinate
system, in which 7 X 7 = —k,and so on.
We’ll use only right-handed systems.
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Example :
1.12 Calculating a vector product
Vector A has magnitude 6 units and is in the direction of the
+x-axis. Vector B has magnitude 4 units and lies in the xy-plane,
making an angle of 30° with the +x-axis (Fig. 1.25). Find the vec-
tor product A X B.

IDENTIFY and SET UP: We can find the vector product in one of
two ways. The first way is to use Eq. (1.22) to determine the mag-
nitude of A X B and then use the right-hand rule to find the direc-
tion of the vector product. The second way is to use the components
of A _and B to find the components of the vector product
C=4AxB using Egs. (1.27).

1.25 Vectors A and B and their vector product C=A4 x B. The
vector B lies in the xy-plane.

CHAPTER 1 | Units, Physical Quantities, and Vectors

EXECUTE: With the first approach, from Eq. (1.22) the magnitud,

of the vector product is
ABsin ¢ = (6)(4)(sin30°) = 12

From the right-hand rule, the direction of A x Bis along the
+z-axis, so we have A X B = 12k.

To use the second approach, we first write the components of A
and B:
A, =6
B, = 4cos 30° = 2\/3
Defining C=4x E, we have from Egs. (1.27) that
C.=(0)(0) - (0)(2) =0
¢, = (0)(2V3) - (6)(0) =0
C.=(6)(2) - (0)(2V3) = 12

The vector product C has only a z-component, and it lies along the
+z-axis. The magnitude agrees with the result we obtained with the
first approach, as it should.

A, =0
B, = 45sin30° = 2

EVALUATE: For this example the first approach was more direct
because we knew the magnitudes of each vector and the angle
between them, and furthermore, both vectors lay in one of the
planes of the coordinate system. But often you will need to find the
vector product of two vectors that are not so conveniently oriented
or for which only the components are given. In such a case the sec-
ond approach, using components, is the more direct one.

 Test Your Understanding

For the two vectors A = 37 iy 2jand B = 47 + 5k, find the scalar product A - B
and the vector product A x B.
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Summary

1 physical quantities of mechanics are mass, length, and time. The corresp(?nd-
s are the kilogram, the meter, and the second. Other units for these quantities,
£ 10, are identified by adding prefixes to the basic unit. Derived units for
hysical quantities are products or quotients of the basic units. Equation.s must be dimen-
consistent; two terms can be added only when they have the same units.

The fundamenta
ing basic SI unit:
related by powers O

other p}
sionally
(See Examples 1.1 and 1.2)

The accuracy of a measurement can be indicated by the number of sigr}ificant ﬁgures orbya
stated uncertainty. The result of a calculation usually ha§ no more significant figures than the
input data. When only crude estimates are available for input data, we can often make useful
order-of-magnitude estimates. (See Examples 1.3 and 1.4)

Scalar quantities are numbers, and combine with the usual rules of arithmetic. Vector guantities
have direction as well as glagnitgde, and combine according to the rules of vector addition.
Graphically, two vectors A and B are added by placing the tail of B at the head, or tip, of A.
The vector sum A + B then extends from the tail of A to the head of B. (See Example 1.5)

Vector addition can be carried out using components of vec- R, = A, + B,

tors. The x-component of R = A + B is the sum of the x- AR

components of A and B, and likewise for the y- and Y Y Y
z-components. (See Examples 1.6 and 1.7) R,=A,+ B, (1.10)
Unit vectors describe directions in space. A unit vector has a A=A7+ Aj+A Z]Ac
magnitude of one, with no units. The unit vectors 1, J,and k, (1.16)
aligned with the x-, y-, and z-axes of a rectangular coordinate :
system, are especially useful. (See Example 1.9)

The scalar product C = A B of two vec- A-B = ABcos ¢ = |Z| |1}| cos ¢ (1.18)
tors A and B is a scalar quantity. It can

be expressed in two ways: in terms of A-B= AB, + A B, + A,B, (1.21)

the magnitudes of A and B and the angle
¢ between the two vectors, or in terms of
the components of A and B. The scalar
product is commutative; for any two vec-
tors A and E, A-B = B-A. The scalar
product of two perpendicular vectors is
zero. (See Examples 1.10 and 1.11)
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The vector product C=A4xBof two vectors A and B is

CHAPTER 1 | Units, Physical Quantities, and Vectors

C = ABsin ¢

another vector C The magnitude of AXxB depends on the

magnitudes of A and B and the angle ¢ between the two
vectors. The direction of A X B is perpendicular to the plane S Yen b
ZiX A

of the two vectors being multiplied, as given by the right-hand

rule. The components of C=A x Bcanbe expressed in terms C.,=AB,— AB,

of the components of A and B The vector product is not com-
mutative; for any two vectors A and B AXB =-BxA.
The vector product of two parallel or antiparallel vectors is

zero. (See Example 1.12)

Key Terms

C, = Asz iy Asz

(1.22)

(1.27)

range of validity, 3
target variable, 4
model, 4

particle, 4

physical quantity, 5
operational definition, 5
unit, 5

International System (SI), 5
second, 6

meter, 6

kilogram, 6

prefix, 6

Your Notes

dimensionally consistent, 8
uncertainty (error), 10

accuracy, 10

fractional error, 10

percent error, 10

significant figures, 10

scientific (powers-of-10) notation, 11
precision, 12
order-of-magnitude estimates, 13
scalar quantity, 14

vector quantity, 14

magnitude of a vector, 14

displacement, 14

parallel vectors, 14
negative of a vector, 15
antiparallel vectors, 15
vector sum (resultant), 15
component vectors, 18
components, 18

unit vector, 23

scalar (dot) product, 25
vector (cross) product, 27
right-hand rule, 28
right-handed system, 29




MO

Answer to Chapter Opening Question

s that a typical human blood cell is about 8 pm in

1.3e show
Figure hirteen such cells laid side by side would span

diameter. Twelve or t
a distance of 100 um = 107 m.

Answers to Test Your Understanding Questions

Sedlon1 5 Dulsnty = (1.80kg)/(6.0 X 107*m?*) =
30 % 10° kg/m>. When multiplying or dividing, the number with
the fewest significant figures controls the number of significant fig-

ures in the result.
Section 1.6 The answer depends on how many students are

enrolled at your campus.
Section 1.7 When adding two vectors together, the order of the

vectors doesn’t matter. Hence the resultant displacement would be
the same as in Example 1.5 (magnitude 2.24 km, direction 63.4°
east of north).

Section 1.8 You are 5.66 km from your starting point in a direc-
tion 45.0° south of west.

Sectlon19 R .
A = (38.371 + 61 407)m, B= (—46.361 = 33.68] )m,

C— ~17. 6()])m
+ (2)(0) + (0)(5) =12
0)]i + [(0)(4) = (3)(5))j

Discussion Questions

Q1.1 How many correct experiments do we need to disprove a the-
ory? How many to prove a theory? Explain.

Q1.2 A guidebook describes the rate of climb of a mountain trail as
120 meters per kilometer. How can you express this as a number
with no units?

Q1.3 Suppose you are asked to compute the tangent of 5.00
meters. s this possible? Why or why not?

Q1.4 A highway contractor stated that in building a bridge deck he
poured 250 yards of concrete. What do you think he meant?

Q1.5 What is your height in centimeters? What is your weight in
newtons?

Q1.6 The U.S. National Institute of Science and Technology
(NIST) maintains several accurate copies of the international stan-
dgrd kilogram. Even after careful cleaning, these national standard
Kilograms are gaining mass at an average rate of about
I pgly (1y = 1year) when compared every ten years or so to the
slzm(.lurd international kilogram. Does this apparent change have
any importance? Explain.

Q1.7 What physical phenomena (other than a pendulum or cesium
clock) could you use to define a time standard?

Q1.8 Describe how you could measure the thickness of a sheet of
paper with an ordinary ruler.

Discussion Questions 33

Q1.9 The quantity 7 = 3.14159 ... is a number with no dimen-
sions, since it is a ratio of two lengths. Describe two or three other
geometrical or physical quantities that are dimensionless.

Q1.10 What are the units of volume? Suppose another student tells
you that a cylinder of radius r and height & has volume given by
7rr°h. Explain why this cannot be right.

Q1.11 Three archers each fire four arrows at a target. Joe’s four
arrows hit at points 10 cm above, 10 cm below, 10 cm to the left,
and 10 cm to the right of the center of the target. All four of Moe’s
arrows hit within 1 cm of a point 20 cm from the center, and Flo’s
four arrows all hit within 1 cm of the center. The contest judge says
that one of the archers is precise but not accurate, another archer is
accurate but not precise, and the third archer is both accurate and
precise. Which description goes with which archer? Explain your
reasoning.

Q1.12 A circular racetrack has a radius of 500 m. What is the dis-
placement of a bicyclist when she travels around the track from the
north side to the south side? When she makes one complete circle
around the track? Explain your reasoning.

Q1.13 Can you find two vectors with different lengths that have a
vector sum of zero? What length restrictions are required for three
vectors to have a vector sum of zero? Explain your reasoning.
Q1.14 One sometimes speaks of the “direction of time,” evolving
from past to future. Does this mean that time is a vector quantity?
Explain your reasoning.

Q1.15 Air traffic controllers give instructions to airline pilots
telling them in which direction they are to fly. These instructions
are called “vectors.” If these are the only instructions given, is the
name “vector” used correctly? Why or why not?

Q1.16 Can you find a vector quantity that has a magnitude of zero,
but components that are different from zero? Explain. Can the mag-
nitude of a vector be less than the magnitude of any of its compo-
nents? Explain.

Q1.17 (a) Does it make sense to say that a vector is negative?
Why? (b) Does it make sense to say that one vector is the negative
of another? Why? Does your answer here contradict what you said
in part (a)”

Q1.18 If C is the vector sum of A and B,C=4+ B, what must
be true if C = A + B? What must be true if C = 0?7

Q1.19 If A and B are nonzero vectors, is it possible for A-Band
A x B both to be zero? Explain.

Q1.20 What does A A the scalar product of a vector with itself,
give? What about A x A the vector product of a vector with itself?
Q1.21 Let A represent any nonzero vector. Why is A/A a unit vec-
tor and what is its direction? If 6 is the angle that A makes with the
+x-axis, explain why (A/A) « 1 is called the direction cosine for
that axis.

Q1.22 Wthh of the following are legitimate | mathematical opera-
tions: (B C) b) (A B) xC; ¢c) A- (B x C);
d) A x (B x C);e) A x (B+C)?In each case, give the reason
for your answer.

Q1.23 Consider the two repeated vector products A x (B X C)
and (A X B) x C. Give an example that illustrates the general
rule that these two vector products do not have the same magnitude
or direction. Can you choose the vectors A B and C such that these
two vector products are equal to each other? If so, give an example.
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Exercises

Section 1.3 Standards and Units

Section 1.4 Unit Consistency and Conversions

1.1 Starting with the definition 1 in. = 2.54 cm, find the number
of kilometers in 1.00 mile.

1.2 According to the label on a bottle of salad dressing, the volume
of the contents is 0.473 liter (L). Using only the conversions
1L = 1000 cm®and 1 in. = 2.54 cm, express this volume in cubic
inches.

1.3 How many nanoseconds does it take light to travel 1.00 km in
vacuum?

1.4 The density of lead is 11.3 g/cm® What is this value in kilo-
grams per cubic meter?

1.5 The most powerful engine available for the classic 1963
Chevrolet Corvette Sting Ray developed 360 horsepower and had a
displacement of 327 cubic inches. Express this displacement in
liters (L) by using only the conversions 1 L = 1000 cm® and
lin. = 2.54 cm.

1.6 Told that he needs to set goals for himself, Billy Joe Bob
decides to drink one cubic meter of his favorite beverage during the
coming year. How many 16-fluid-ounce bottles should he drink
each day? (Use Appendix E. A fluid ounce is a volume unit; 128
fluid ounces equals one gallon.)

1.7 The Concorde is the fastest airliner used for commercial ser-
vice. It cruises at 1450 mi/h (about two times the speed of sound, or
Mach 2). a) What is the cruise speed of the Concorde in km/h?
b) What is it in m/s?

1.8 While driving in an exotic foreign land you see a speed limit
sign on a highway that reads 180,000 furlongs per fortnight. How
many miles per hour is this? (One furlong is § mile, and a fortnight
is 14 days. A furlong originally referred to the length of a plowed
furrow.)

1.9 The gasoline consumption of a small car is advertised as
15.0km/L (1L = 1 liter). How many miles per gallon is this? Use
the conversion factors in Appendix E.

1.10 The following conversions occur frequently in physics and
are very useful. a) Use 1 mi = 5280 ftand 1h = 3600 s to con-
vert 60 mph to units of ft/s. b) The acceleration of a freely falling
object is 32 ft/s%. Use 1 ft = 30.48 cm to express this acceleration
in units of m/s% c) The density of water is 1.0 g/cm®. Convert this
density to units of kg/m”.

1.11 Neptunium. In the fall of 2002, a group of scientists at Los
Alamos National Laboratory determined that the critical mass of
neptunium-237 is about 60 kg. The critical mass of a fissionable
material is the minimum amount that must be brought together to
start a chain reaction. This element has a density of 19.5 g/cm®.
What would be the radius of a sphere of this material that has a crit-
ical mass?

Section 1.5 Uncertainty and Significant Figures

1.12 A useful and easy-to-remember approximate value for the
number of seconds in a year is 7 X 10”. Determine the percent
error in this approximate value. (There are 365.24 days in one year.)
1.13 Figure 1.5 shows the result of unacceptable error in the stop-
ping position of a train. a) If a train travels 890 km from Berlin to

Paris and then overshoots the end of the track by 10 m, what is the
percentage error in the total distance covered? b) Would it be cor-
rect to write the total distance covered by the train as 890,010 m?
Explain.

1.14 With a wooden ruler you measure the length of a rectangular
piece of sheet metal to be 12 mm. You use micrometer calipers to
measure the width of the rectangle and obtain the value 5.98 mm.
Give your answers to the following questions to the correct number
of significant figures. a) What is the area of the rectangle?
b) What is the ratio of the rectangle’s width to its length? c) What is
the perimeter of the rectangle? d) What is the difference between
the length and width? €) What is the ratio of the length to the width?
1.15 Estimate the percent error in measuring a) a distance of about
75 cm with a meter stick; b) a mass of about 12 g with a chemical
balance; c) a time interval of about 6 min with a stopwatch.

1.16 A rectangular piece of aluminum is 5.10 + 0.01 cm long and
1.90 £ 0.01 cm wide. a) Find the area of the rectangle and the
uncertainty in the area. b) Verify that the fractional uncertainty in
the area is equal to the sum of the fractional uncertainties in the
length and in the width. (This is a general result; see Challenge
Problem 1.94.)

1.17 Asyou eat your way through a bag of chocolate chip cookies,
you observe that each cookie is a circular disk with a diameter of
8.50 = 0.02 cm and a thickness of 0.050 * 0.005 cm. a) Find the
average volume of a cookie and the uncertainty in the volume.
b) Find the ratio of the diameter to the thickness and the uncertainty
in this ratio.

Section 1.6 Estimates and Orders of Magnitude

1.18 How many gallons of gasoline are used in the United States
in one day?

1.19 A box of typewriter paper has dimensions 11 in. X
17 in. X 9in.; it is marked “10 M.” Does that mean it contains
10,000 sheets or 10 million?

1.20 How many kernels of corn does it take to fill a 2-L soft drink
bottle?

1.21 How many words are there in this book?

1.22 What total volume of air does a person breathe in a lifetime?
How does that compare with the volume of the Houston
Astrodome? (Estimate that a person breathes about 500 cm? of air
with each breath.)

1.23 How many hairs do you have on your head?

1.24 How many times does a human heart beat during a lifetime?
How many gallons of blood does it pump? (Estimate that the heart
pumps 50 cm® of blood with each beat.)

1.25 In Wagner’s opera Ring of the Nibelung, the goddess Freia is
ransomed for a pile of gold just tall enough and wide enough to
hide her from sight. Estimate the monetary value of this pile. (Refer
to Example 1.4 for information on the price per ounce and density
of gold.)

1.26 How many drops of water are in all the oceans on earth?
1.27 How many pizzas are consumed each academic year by stu-
dents at your school?

1.28 How many dollar bills would you have to stack to reach the
moon? Would that be cheaper than building and launching a space-
craft?
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section 1.7 Vectors and Vector Addition o

1.30 Hearing rattles from a snake, you make two rapid displace-
ments of magnitude 1.8 m and 2.4 m. In sketches (roughly to scale),
show how your two displacements might add up to give a resultant
of magnitude a) 4.2 m; b) 0.6 m; ¢) 3.0 m.

1.31 A postal employee drives a delivery truck along the route
shown in Fig. 1.26. Determine the magnitude and direction of the
resultant displacement by drawing a scale diagram. (See also Exer-
cise 1.38 for a different approach to this same problem.)

2.6 km

START

Figure 1.26 Exercises 1.31 and 1.38.

1.32 For the vectors A and B in Fig. 1.27, use a scale drawing to
find the magnitude and direction of a) the vector sum A+B ; b) the
vector difference A — B. From
your answers to parts (a) and

(b), find the magnitude and 1 B (18.0m)
dirc.clioq of ¢c) —A — B;
d) B — A. (See also Exercise
1.39 for a different approach to A (12.0m) 371.0°

e X

this problem.) o
1.33 A spelunker is surveying
a cave. She follows a passage
180 m straight west, then 210 m
in a direction 45° east of south,
and then 280 m at 30° east of north. After a fourth unmeasured dis-
placement she finds herself back where she started. Use a scale
drawing to determine the magnitude and direction of the fourth dis-

placement. (See also Problem 1.69 for a different approach to this
problem.)

Figure 1.27 Exercises 1.32,
1.39, 1.44, and 1.54.

Section 1.8 Components of Vectors

1.34 Use a scale drawing to find the x- and y-components of the fol-
lowing vectors. For each vector the numbers given are i) the magni-
tude ot." the vector and ii) the angle, measured in the sense from the
x-axis toward the +y-axis, that it makes with the +x-axis. Find

a) magn%tude 9.30m, angle 60.0°; b) magnitude 22.0 km, angle 135°;
¢) magnitude 6.35 cm, angle 307°.

Exercises 35

1.35 Compute the x- y
and y-components of the
vectors Z, E, and C in
Fig. 1.28.
1.36 Let the angle 6 be
t_l}e angle that the vector 60.0° 40.0°
A makes with the
+x-axis, measured
counterclockwise from
that axis. Find the angle
0 for a vector that has
the following compo-
nents: a) A, = 2.00 m,
A,= —1.00m; b) A, = 2.00m, A, = 1.00m; ¢) A, =-—2.00 m,
A,=1.00m;d)A, = —2.00m, A, = —1.00 m.
1.37 A rocket fires two engines simultaneously. One produces a
thrust of 725 N directly forward while the other gives a 513 N
thrust at 32.4° above the forward direction. Find the magnitude and
direction (relative to the forward direction) of the resultant force
which these engines exert on the rocket.
1.38 A postal employee drives a delivery truck over the route
shown in Fig. 1.26. Use the method of components to determine the
magnitude and direction of her resultant displacement. In a vector
addition diagram (roughly to scale), show that the resultant dis-
placement found from your diagram is in qualitative agreement
with the result you obtained using the method of components.
1.39 For the vectors A and B in Fig. 1.27, use the method of com-
ponents to find the magnitude and direction of a) the vector sum
A + B; b) the vector sum B + A; c) the vector difference A - f!;
d) the vector difference B-A.
1.40 Find the magnitude and direction of the vector represented
by the following pairs of components: a) A, = —8.60 cm,
A,=520cm;b)A, = —9.70 m, A, = —2.45m;c) A, = 7.75 km,
A, = —2.70 km.
1.41 A disoriented physics professor drives 3.25 km north, then
4.75 km west, and then 1.50 km south. Find the magnitude and direc-
tion of the resultant displacement, using the method of components.
In a vector addition diagram (roughly to scale), show that the resul-
tant displacement found from your diagram is in qualitative agree-
ment with the result you obtained using the method of components.
1.42 Vector A has components
A, = 1.3Qcm, A, = 2.25 cmy;
vector B has components
B, =410cm, B, = —3.75 cm.
Find a) the components of the
vector sum A + l_§; b) thS: mag-
nitude and direction of A + B;
c) the components of the vector 60.0°
difference B — A; d) the magni- x
tude and direction of B — A. o 60.0°
1.43 Vector A is 2.80 cm long
and is 60.0° above the x-axis in
the first quadrant. Vector B is
1.90 cm long and is 60.0° below
the x-axis in the fourth quadrant
(Fig. 1.29). Find the magnitude

37.09/ A (12.0 m)

€ (6.0m) B (15.0 m)

Figure 1.28 Exercises 1.35, 1.45, and
1.50, and Problem 1.68.

y

A (2.80 cm)

B (1.90 cm)

Figure 1.29 Exercises 1.43
and 1.56.
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and direction of a) A+ E; b) A- fi; c) B — A. In each case,
sketch the vector addition or subtraction and show that your numer-
ical answers are in qualitative agreement with your sketch.

y
Section 1.9 Unit Vectors

1.44 Write each vector in Fig.
1.27 in terms of the unit vec-
tors Z and j.

1.45 Write each vector in Fig.
1.28 in terms of the unit vec-
tors 7 and j.

1.46 a) Write each vector in
Fig. 1.30 in terms of the unit
vectors 7 and j. b) Use unit
vectors to express the vector C,
where € = 3.004 — 4.00B.
¢) Find the magnitude and
direction of C.

1.47 Given two vectors A = 4.007 + 3.00] and B = 5.007 —
2.007, a) find the magnitude of each vector; b) write an expression
for the vector difference A — B using unit vectors; ¢) find the mag-
nitude and dll’eCtIOIl of the vector difference A — B. d) In a vector
diagram show A, B, and A — B, and also show that your diagram
agrees qualitatively with your answer in part (c).

1.48 a) Is the vector (7 +] + k) a unit vector? Justify your
answer. b) Can a unit vector have any components with magnitude
greater than unity? Can it have any negative components? In each
case justify your answer. ¢) If A = a(3.07 + 4.0}), where a is a
constant, determine the value of a that makes A aunit vector.

1.49 a) Use vector components to prove that two vectors commute
for both addition and the scalar product. b) Use vector components
to prove that two vectors antlcommute for the vector product. That
is, prove that A X B = —B X A.

A (3.60 m)

70.0°

30.0°

B(24m)

Figure 1.30 Exercise 1.46 and
Problem 1.82.

Section 1.10 Products of Vectors

1.50 For the vectors A, B and Cin Fig. 1.28, find the scalar prod-
uctsa)A B b)B C c)A C.

1.51 a) Find the scalar product of the two vectors Aand B given in
Exercise 1.47. b) Find the angle between these two vectors.

1.52 Find the angle between each of the following pairs of vectors:

a) A = —2.00i + 6.00] and B = 2.007 — 3.00
b)A—300z+500] and B—10001+600]
) A = —4.00% +2.00j and B = 7.007 + 14.00]

1.53 Assuming a right-handed coordinate system, find the direc-
tion of the +z-axis in a) Fig. 1.15a; b) Fig. 1.15b.

1.54 For the two vectors in Fig. 1.27, a) find the magnitude and
direction of the vector product A x B; b) find the magnitude and
direction of B X A.

1.55 Find the vector product AxB (expressed in unit vectors) of
the two vectors given in Exercise 1.47. What is the magnitude of
the vector product?

1.56 For the two vectors in Flg 1. 29 a) find the magnitude and
direction of the vector product A x B; b) find the magnitude and
direction of B X A.

Problems

1.57 An acre, a unit of land measurement still in wide use, has a
length of one furlong (3§ mi) and a width one-tenth of its length.
a) How many acres are in a square mile? b) How many square feet
are in an acre? See Appendix E. c) An acre-foot is the volume of
water that would cover one acre of flat land to a depth of one foot.
How many gallons are in an acre-foot?

1.58 An estate on the California coast was offered for sale for
$4,950,000. The total area of the estate was 102 acres (see Problem
1.57). a) Considering the price of the estate to be proportional to its
area, what was the cost of one square meter of the estate? b) What
would be the price of a portion of the estate the size of a postage
stamp (% in. by 1.0 in.)?

1.59 The Hydrogen Maser. You can use the radio waves gener-
ated by a hydrogen maser as a standard of frequency. The fre-
quency of these waves is 1,420,405,751.786 hertz. (A hertz is
another name for one cycle per second.) A clock controlled by a
hydrogen maser is off by only 1 s in 100,000 years. For the follow-
ing questions, use only three significant figures. (The large number
of significant figures given for the frequency simply illustrates the
remarkable accuracy to which it has been measured.) a) What is the
time for one cycle of the radio wave? b) How many cycles occur in
1h?c) How many cycles would have occurred during the age of the
earth, which is estimated to be 4.6 X 10° years? d) By how many
seconds would a hydrogen maser clock be off after a time interval
equal to the age of the earth?

1.60 Estimate the number of atoms in your body. (Hint: Based on
what you know about biology and chemistry, what are the most
common types of atom in your body? What is the mass of each type
of atom? Appendix D gives the atomic masses for different ele-
ments, measured in atomic mass units; you can find the value of an
atomic mass unit, or 1 u, in Appendix F.)

1.61 Biological tissues are typically made up of 98% water. Given
that the density of water is 1.0 X 10° kg/m?, estimate the mass of
a) the heart of an adult human; b) a cell with a diameter of 0.5 wm;
¢) a honey bee.

1.62 Iron has a property such that a 1.00 m® volume has a mass of
7.86 X 10° kg (density equals 7.86 X 10°kg/m?®). You want to
manufacture iron into cubes and spheres. Find a) the length of the
side of a cube of iron that has a mass of 200.0 g; b) the radius of a
solid sphere of iron that has a mass of 200.0 g.

1.63 a) Estimate the number of dentists in your city. You will need
to consider the number of people in your city, how often they need
to go to the dentist, how often they actually go, how many hours a
typical dental procedure (filling, root canal, and so on) takes, and
how many hours a dentist works in a week. b) Using your local
telephone directory, check to see whether your estimate was
roughly correct.

1.64 Physicists, mathematicians, and others often deal with large
numbers. The number 10'%° has been given the whimsical name
googol by mathematicians. Let us compare some large numbers in
physics with the googol. (Note: This problem requires numerical
values that you can find in the appendices of the book, with which
you should become familiar.) a) Approximately how many atoms
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t2 For simplicity, assume the average atomic
mass of the atoms to be 14 g/mol. Avvogadro’s number gives the
number of atoms in a mole. b) Approximately how many neutrons
are in a neutron star? Neutron stars ar§ composed almost entirely of
neutrons and have approximately twice Fhe mass of th.e sun. c)In
the leading theory of the origin of the universe, the eptlre universe
that we can now observe occupied, at a very early tlme', a sphere
whose radius was approximately equal to the present dl‘stance of
the earth to the sun. At that time the universe had]a density (mass
divided by volume) of 10'® g/cm®. Assuming that 5 of the particles
were protons, 1 of the parti-
cles were neutrons, and the
remaining l were electrons,
how many particles then
made up the universe?

1.65 Three horizontal

ropes pull on a large stone 30.0° N
stuck in the ground, produc- 53.0°
ing the vector forces/A, B
and C shown in Fig. 1.31.
Find the magnitude and
direction of a fourth force
on the stone that will make the vector sum of the four forces zero.
1.66 Emergency Landing. A plane leaves the airport in Galisto
and flies 170 km at 68° east of north and then changes direction to
fly 230 km at 48° south of east, after which it makes an immediate
emergency landing in a pasture. When the airport sends out a res-
cue crew, in which direction and how far should this crew fly to go
directly to this plane?

1.67 You are to program a robotic arm on an assembly line to
move in the xy-plane. Its first displacement is A'; its second dis-
placement is B, of magnitude 6.40 cm and direction 63.0° mea-
sured in the sense from the +x-axis toward the —y-axis. The
resultant C = A + B of the two displacements should also have a
magnitude of 6.40 cm, but a direction 22.0° measured in the sense
from the +x-axis toward the +y-axis. a) Draw the vector addition
diagram for these vectors, roughly to scale. b) Find the components
of A. ¢) Find the magnitude and direction of A.

1.68 a) Find the magnitude and direction of the vector R that is the
sum of the !hree vectors ﬁ, E, and C in Fig. 1.28. In a diagram,
show how R is formed from the three vectors in Fig. 1.28. b) Find
the magnitude and direction of the vector S=C-4A4-BIna
diagram, show how S is formed from the three vectors in Fig. 1.28.
1.69 As noted in Exercise 1.33, a spelunker is surveying a cave.
She follows a passage 180 m straight west, then 210 m in a direc-
tion 45° east of south, then 280 m at 30° east of north. After a
fourth unmeasured displacement she finds herself back where she
started. Use the method of components to determine the magnitude
ur.ld direction of the fourth displacement. Draw the vector addition
dlagru.m and show that it is in qualitative agreement with your
numerical solution.

1-70 A sailor in a small sailboat encounters shifting winds. She
s:.uls 2.00 km east, then 3.50 km southeast, and then an additional
d¥stuncc in an unknown direction. Her final position is 5.80 km
directly cast of the starting point (Fig. 1.32). Find the magnitude
and direction of the third leg of the journey. Draw the vector addi-

make up our plane

. y
B (80.0 N)

30.0° A (100.0N)

C (40.0N)

Figure 1.31 Problem 1.65.

Problems 37

tion diagram and show that it is in qualitative agreement with your
numerical solution.

Figure 1.32 Problem 1.70.

1.71 A cross-country skier skis 2.80 km in the direction 45.0° west
of south, then 7.40 km in the direction 30.0° north of east, and
finally 3.30 km in the direction 22.0° south of west. a) Show these
displacements in a diagram. b) How far is the skier from the start-
ing point?

1.72 On a training flight, a

st}ldent pilot flies from NEBRASKA \ IOWA
Lincoln, Nebraska to 147 km .
Clarinda, Iowa, then to St. 85 Clarinda

Joseph, Missouri, and then
to Manhattan, Kansas (Fig.
1.33). The directions are
shown relative to north: 0°
is north, 90° is east, 180° is
south, and 270° is west.
Use the method of compo- N
nents to find a) the dis-
tance she has to fly from S
Manbhattan to get back to
Lincoln; b) the direction
(relative to north) she must
fly to get there. Illustrate your solution with a vector diagram.
1.73 A graphic artist is creating a new logo for her company’s Web
site. In the graphics program she is using, each pixel in an image
file has coordinates (x, y), where the origin (0, 0) is at the upper-left
corner of the image, the +x-axis points to the right, and the +y-axis
points down. Distances are measured in pixels. a) The artist draws
a line from the pixel location (10, 20) to the location (210, 200).
She wishes to draw a second line that starts at (10, 20), is 250 pix-
els long, and is at angle of 30° measured clockwise from the first
line. At which pixel location should this second line end? Give your
answer to the nearest pixel. b) The artist now draws an arrow that
connects the lower-right end of the first line to the lower right end
of the second line. Find the length and direction of this arrow. Draw
a diagram showing all three lines. '

1.74 Getting Back. An explorer in the dense jungles of equatorial
Africa leaves his hut. He takes 40 steps northeast, then 80 steps 60°
north of west, then 50 steps due south. Assume his steps all have
equal length. a) Sketch, roughly to scale, the three vectors and their
resultant. b) Save him from becoming hopelessly lost in the jungle

Lincoln

235°

KANSAS ~ MISSOURI
Figure 1.33 Problem 1.72.
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by giving him the displacement, calculated using the method of
components, that will return him to his hut.

1.75 A ship leaves the island of Guam and sails 285 km at
40.0° north of west. In which direction must it now head and how
far must it sail so that its resultant displacement will be 115 km
directly east of Guam?

1.76 A boulder of weight w rests on a hillside that rises at a con-
stant angle « above the horizontal, as shown in Fig. 1.34. Its weight
is a force on the boulder that has
direction vertically downward.
a) In terms of « and w, what is
the component of the weight of
the boulder in the direction par-
allel to the surface of the hill?
b) What is the component of the
weight in the direction perpen-
dicular to the surface of the hill?
¢) An air conditioner unit is fas-
tened to a roof that slopes upward at an angle of 35.0°. In order that
the unit not slide down the roof, the component of the unit’s weight
parallel to the roof cannot exceed 550 N. What is the maximum
allowed weight of the unit?

1.77 Bones and Muscles. A patient in therapy has a forearm that
weighs 20.5 N and that lifts a 112.0-N weight. These two forces
have direction vertically downward. The only other significant
forces on his forearm come from the biceps muscle (which acts per-
pendicularly to the forearm) and the force at the elbow. If the biceps
produces a pull of 232 N when the forearm is raised 43° above the
horizontal, find the magnitude and direction of the force that the
elbow exerts on the forearm. (The sum of the elbow force and
the biceps force must balance the weight of the arm and the weight
it is carrying, so their vector sum must be 132.5 N, upward.)

1.78 You are hungry and decide to go to your favorite neighbor-
hood fast-food restaurant. You leave your apartment and take the
elevator 10 flights down (each flight is 3.0 m) and then go 15 m
south to the apartment exit. You then proceed 0.2 km east, turn
north, and go 0.1 km to the entrance of the restaurant. a) Determine
the displacement from your apartment to the restaurant. Use unit-
vector notation for your answer, being sure to make clear your
choice of coordinates. b) How far did you travel along the path you
took from your apartment to the restaurant and what is the magni-
tude of the displacement you calculated in part (a)?

1.79 You are canoeing on a lake. Starting at your camp on the
shore, you travel 240 m in the direction 32° south of east to reach a
store to purchase supplies. You know the distance because you have
located both your camp and the store on a map of the lake. On the
return trip you travel distance B in the direction 48° north of west,
distance C in the direction 62° south of west, and then you are back
at your camp. You measure the directions of travel with your com-
pass, but you don’t know the distances. Since you are curious to
know the total distance you rowed, use vector methods to calculate
the distances B and C.

1.80 You are camping with two friends, Joe and Karl. Since all
three of you like your privacy, you don’t pitch your tents close

Figure 1.34 Problem 1.76.
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together. Joe’s tent is 21.0 m from yours, in the direction 23.
south of east. Karl’s tent is 32.0 m from yours, in the direction 37.
north of east. What is the distance between Karl’s tent and Joe
tent?
1.81 Vectors A and B are drawn from a common point. Vector
has magnitude A and angle 6, measured in the sense from t]
+x-axis to the +y- axis. The corresponding quantities for vector
are B and 6. Then A =Acos 041 + Asing,], B=B8B cos 051
Bsin 6], and ¢ = |0, — 04| is the angle between A and ,
a) Derive Eq. (1.18) from Eq. (1.21). b) Derive Eq. (1.22) fro
Eq. (1.27).
1.82 For the two vectors A and B in Fig. 1.30, a) find the scal;
product A B, ;,b) find the magnitude and direction of the vect
product A xB.
1.83 Figure 1.8c shows a parallelogram based on the two vecto:
A and B. a) Show that the magnitude of the cross product of thes
two vectors is equal to the area of the parallelogram. (Hin.
area = base X height.) b) What is the angle between the cros
product and the plane of the parallelogram?
1.84 The vector A is 3.50 cm long and is directed into this pag
Vector B points from the lower-right corner of this page to th
upper-left corner of this page. Define an appropriate right-hande
coordinate system and find the three components of the vecta
product A x B measured in cm Ina dlagram show your coordi
nate system and the vectors A B andA X B.
1 .85 Given two vectors_ A = —2.007 + 3. 00j + 4.00k an
= 3.007 + 1.00] — 3. OOk do the following. a) Find the magni
tude of each vector. b) Write an expression for the vector differenc:
A- l}, using unit vectors. c) Find the magnitude of the vector dif
ference A — B. Is this the same as the magnitude of B -4
Explain.
1.86 Bond Angle in Methane. In the methane molecule, CH,
each hydrogen atom is at a corner of a regular tetrahedron with the
carbon atom at the center. In coordinates where one of the C—F
bonds is in the direction of z + j + k, an adjacent C — H bond it
inthez —j — k direction. Calculate the angle between these twc
bonds.
1. 87 The two vectors A and B are drawn from a common point
andC =4 + B a) Show that if C*> = A*> + B?, the angle betweer
the vectors A and B is 90°. b) Show that if C> < A> + B2, the
angle between the vectors A and B is greater than 90°. c) Show that
1f C? > A + B the angle between the vectors A and B is between
0° and 90°.
1.88 When two vectors A and B are drawn from a common point,
the angle between them is ¢. a) Using vector techniques, show that
the magnitude of their vector sum is given by

VA> + B? + 2AB cos ¢

b) If A and B have the same magnitude, for which value of ¢
will their vector sum have the same magnitude as A or B?
c) Derive a result analogous to that in part (a) for the magnitude of
the vector difference A — B. d) If A and B have the same
magnitude, for what value of ¢ will A — B have this same magni-
tude?



